
CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

To:MasterObjects, Inc.

From: Spencer Hosie, Diane S. Rice

Date: July 22, 2020

Re: Proposed Patent Infringement Lawsuit (Plaintiff: MasterObjects, Inc., Defendant:
Amazon.com, Inc.)

——————————————————————————————————————

This memorandum outlines the proposed patent infringement lawsuit to be filed by
MasterObjects, Inc. against Amazon.com, Inc. in the United States District Court for the
Southern District of New York. The lawsuit centers on the alleged infringement of U.S. Patent
Nos. 8,539,024, 9,760,628, 10,311,073, and 10,394,866 (hereinafter referred to as the
“Patents-in-Suit”). MasterObjects, Inc. contends that Amazon.com, Inc.’s predictive search
technology, implemented in its Amazon.com website and mobile applications, unlawfully
incorporates technology covered by the Patents-in-Suit, which has been confirmed through
detailed investigation and analysis.

I. Background

Overview

MasterObjects, Inc. is a corporation organized under the laws of the State of Delaware, with its
principal place of business in the Netherlands. The company is a pioneer in search technology,
having developed a suite of innovative methods for asynchronous client-server session
communication. These methods are protected by U.S. Patent Nos. 8,539,024, 9,760,628,
10,311,073, and 10,394,866, which collectively cover significant advancements in the efficiency
and responsiveness of search systems.

IP Ownership

MasterObjects is the sole legal and rightful owner of the Patents. The patents cover various
aspects of asynchronous communication between client and server systems, enabling real-time,
incremental updates to search results as users type their queries. This technology significantly
improves user experience by reducing latency and providing instantaneous search suggestions,
which are crucial for modern search engines and e-commerce platforms.

IP Owner and Founder

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

MasterObjects was founded by Mark Smit, a visionary computer scientist who sought to
overcome the limitations of traditional search technologies. In 1999 and 2000, Smit was
frustrated with the slow and inefficient search processes of the time. He left his job and invested
his life savings into founding MasterObjects, aiming to create a faster and more responsive
search paradigm. Smit is the President and CEO of MasterObjects and his inventions, now
protected by the Patents-in-Suit, have transformed the way users interact with search engines,
enabling real-time results that improve both user satisfaction and system performance.

II. Patented Subject Matter and Infringement Allegations

U.S. Patent No. 8,539,024 pertains to groundbreaking methods in asynchronous client-server
session communication. This patent outlines a system and method for managing real-time,
bidirectional communication between a client and a server, enabling efficient and responsive data
retrieval as a user types a query. The technology covered by this patent includes session-based
communication, immediate synchronization of data entered on the client with the server, and
sophisticated auto-completion functions. These innovations are crucial for applications requiring
real-time data interaction, significantly enhancing user experience and system performance.

Upon conducting a meticulous examination, it has been determined that Amazon.com, Inc.‘s
predictive search technology, implemented on its Amazon.com website and mobile applications,
infringes upon U.S. Patent No. 8,539,024. Amazon’s technology unlawfully incorporates
MasterObjects’ patented methods, such as the session-based bidirectional communication and
the auto-completion features that provide real-time search suggestions as users type. The detailed
analysis reveals that Amazon’s systems utilize the same real-time synchronization and data
retrieval techniques outlined in the patent, thereby infringing on the patented claims.

U.S. Patent No. 10,311,073 further elaborates on the methods for asynchronous communication
between a client and server. This patent introduces advanced features for handling real-time user
inputs and delivering responsive suggestions and data updates. Key aspects of this invention
include dynamic query handling and immediate data synchronization, which are essential for
applications requiring instantaneous feedback and data processing.

Amazon.com, Inc.‘s predictive search functionality also infringes upon U.S. Patent No.
10,311,073. The technology employed by Amazon involves dynamic query handling and
real-time data updates, mirroring the patented techniques described in the patent. The
infringement is evident as Amazon’s system processes user inputs and provides immediate
search suggestions, using methods that directly correspond to the patented claims. The inclusion
of these infringing processes within Amazon’s predictive search technology is well-documented
in the attached infringement chart, highlighting the direct correspondence between the product’s
features and the patented claims.

1

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

In addition to the primary features, Amazon.com, Inc.‘s predictive search technology
incorporates several ancillary functionalities that further violate the Patents-in-Suit. These
include advanced mechanisms for optimizing search query processing and delivering incremental
search results, which are explicitly covered by the patents. Such techniques are integral to
Amazon’s competitive edge in the market by providing enhanced user experience through
real-time search suggestions and data retrieval. The infringement analysis identifies these
supplementary features as additional instances where Amazon.com, Inc. has unlawfully utilized
MasterObjects’ patented technology, underscoring the extensive nature of the infringement.

The evidence provided herein, supported by the detailed infringement chart, establishes a clear
case for patent infringement by Amazon.com, Inc. The unauthorized use of the patented
technology in Amazon’s predictive search functionality not only violates the intellectual property
rights of MasterObjects, Inc. but also undermines competitive fairness within the industry.
Accordingly, it is recommended that legal action be initiated to address this infringement and
seek appropriate remedies.

III. Prosecution and Validity

The prosecution history of U.S. Patent Nos. 8,539,024 and 10,311,073 reflects rigorous
examination processes that ensured the issuance of robust and defensible claims. During the
prosecution of U.S. Patent No. 8,539,024, MasterObjects disclosed and addressed prior art
references, such as Kamvar, Baluja, and Kravets. These references were carefully reviewed by
the patent examiner, who concluded that the claims of the ’024 patent were novel and
non-obvious despite the detailed scrutiny￼. The claims were meticulously drafted to encompass
innovative methods of asynchronous client-server session communication, which were deemed
patentable over the prior art.

The prosecution of U.S. Patent No. 10,311,073 was similarly thorough. During this process,
references including U.S. Patent No. 5,222,234, U.S. Patent No. 5,737,734, and U.S. Patent No.
5,845,300 were considered. The examiner found that the claims of the ’073 patent, which cover
advanced methods for handling real-time user inputs and delivering responsive suggestions and
data updates, were distinct and non-obvious in light of these prior art references. The prosecution
history indicates that the claims were crafted to withstand invalidity challenges by clearly
distinguishing the inventive features over the prior art.

Throughout the prosecution, the claims were refined and strengthened to ensure their robustness.
For example, during the prosecution of the ’073 patent, detailed arguments were presented to
overcome objections based on prior art references. The patent owner argued that the combination
of asynchronous communication with a cache system that stores query strings and search results

2

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

based on content queries from multiple users was not disclosed or suggested by the prior art.
This argument was supported by detailed explanations and technical evidence, ultimately leading
to the allowance of the claims.

The prosecution histories of these patents also involved the submission of continuation
applications, which provide a strategic advantage by allowing the addition of new claims to
further strengthen the patent portfolio. This proactive approach ensures that MasterObjects can
adapt and expand its patent coverage in response to evolving technologies and market conditions.

The examination processes for these patents have resulted in the issuance of strong and
enforceable claims. The plaintiff, MasterObjects, Inc., is well-prepared to address any questions
or challenges related to the prior art. Detailed infringement charts and technical analyses are
available to demonstrate how the patented technologies are distinct from the disclosed prior art
and to reinforce the validity of the claims.

IV. MasterObjects Litigation Strategy

MasterObjects, Inc. intends to aggressively pursue its patent infringement claims against several
prominent web and e-commerce technology companies, including Facebook Meta, Google, and
Amazon. The attorneys have identified strong claims based on detailed analysis and previous
infringement contentions. To maximize the impact and efficiency of these legal actions,
MasterObjects plans to bring cases across three specific jurisdictions: the Northern District of
California, the Eastern District of Texas, and the Southern District of New York. These venues
are known for their expertise in handling complex patent litigation and have historically been
favorable for patent holders.

The litigation strategy includes a carefully allocated initial budget of $2 million over the next
year, with provisions for re-evaluation if any case proceeds to trial. This budget will cover filing
fees, expert witness engagements, discovery processes, and other litigation-related expenses. The
goal is to secure substantial settlements from Facebook Meta and Google, leveraging the strength
of MasterObjects’ patents and the clear evidence of infringement to negotiate eight-figure
settlements. This approach allows for a cost-effective resolution while providing significant
financial compensation for the unauthorized use of MasterObjects’ technology.

In contrast, the attorneys are prepared to take the case against Amazon to trial, given the
perceived high damages available. The detailed damages analysis indicates that the potential
financial impact of Amazon’s infringement could exceed $3.24 billion, making it a high-stakes
case worth pursuing in court. MasterObjects’ litigation strategy involves a thorough preparation
for trial, including gathering robust evidence and expert testimony to substantiate the claims. The
decision to potentially take Amazon to trial underscores the commitment to enforcing

3

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

MasterObjects’ intellectual property rights and securing just compensation for the innovative
technologies developed by the company.

V. Amazon’s Likely Defense Strategies

Amazon is expected to challenge the validity of MasterObjects’ patents on several grounds.
However, MasterObjects is confident in the strength and robustness of its patent claims, fortified
by a thorough prosecution history and careful claim drafting. Here, we anticipate and respond to
Amazon’s likely defense strategies based on their past contentions and the arguments raised in
the PTAB proceedings and invalidity contentions.

PTAB Challenge and Outcome

Amazon, through its association with Unified Patents, previously challenged the validity of
MasterObjects’ U.S. Patent No. 10,311,073 in an inter partes review (IPR2020-01201). The
PTAB denied the institution of the IPR, determining that the petition did not show a reasonable
likelihood of prevailing on any of the claims. The PTAB concluded that the prior art references
cited, including Kamvar, Baluja, and Kravets, did not sufficiently demonstrate that the claims
were unpatentable. This decision reinforces the strength of the patent claims and suggests that
similar arguments will be insufficient in future challenges ￼￼.

Anticipation by Prior Art

Challenge: Amazon is likely to argue that the patents-in-suit are anticipated by prior art
references such as Kravets (U.S. 6,704,727) and Trower (U.S. 6,922,810). Amazon claims that
these references disclose the predictive search functionalities described in MasterObjects’
patents.

Response: MasterObjects’ patents were meticulously examined during prosecution, with these
specific references considered and distinguished. The PTAB’s final written decision in the IPR
proceedings rejected similar assertions, affirming the patentability of key claims over these
references. This history demonstrates the novelty of MasterObjects’ inventions and supports their
ability to withstand anticipation challenges.

Obviousness

Challenge: Amazon may argue that the patents are obvious over combinations of prior art,
including the patents cited in their invalidity contentions. They might assert that a person of
ordinary skill in the art would have combined these teachings to arrive at the claimed inventions.

4

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

Response: The prosecution history reveals that the patent examiner considered the most relevant
combinations of prior art and found the claims to be non-obvious. Moreover, the patents in
question address specific technical challenges and provide innovative solutions not suggested or
motivated by prior art, thereby reinforcing their non-obviousness. The PTAB’s decision denying
the IPR also supports the argument that the claimed inventions are not obvious.

Lack of Written Description and Enablement

Challenge: Amazon might assert that the patents fail to meet the written description and
enablement requirements under 35 U.S.C. § 112. They may contend that the specifications do not
adequately describe the claimed inventions or teach how to make and use them.

Response: The detailed specifications of the patents provide ample disclosure, describing the
inventions in sufficient detail to enable a person skilled in the art to replicate them. The
specifications include numerous examples and embodiments that illustrate the practical
application of the claimed technologies. This comprehensive disclosure meets the requirements
of 35 U.S.C. § 112, as confirmed by the successful prosecution history and the denial of the IPR.

Patent Eligibility under 35 U.S.C. § 101

Challenge: Amazon might challenge the patents under 35 U.S.C. § 101, arguing that the claims
are directed to abstract ideas without an inventive concept. They may assert that the patents
merely apply conventional search techniques in a client-server environment.

Response: The patents introduce novel methods for managing search queries and results that
significantly improve the performance and user experience of search engines. These innovations
go beyond mere abstract ideas, embodying practical applications that satisfy the requirements for
patent eligibility under 35 U.S.C. § 101. The PTAB’s decision to deny the IPR further
underscores the substantive nature of the patented technologies.

MasterObjects is prepared to counter these challenges by leveraging the comprehensive
prosecution history and robust claim construction that support the validity and enforceability of
its patents. The anticipated defenses by Amazon have been addressed and refuted in various legal
proceedings, and MasterObjects remains confident in its position.

VI. Damages

This discussion assumes that no pre-suit damages are claimed, although such damages may be
available depending on the circumstances.

5

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

Amazon’s predictive search technology, which is alleged to infringe upon the patents held by
MasterObjects, Inc., holds a significant position in the market. Amazon’s search functionality is
integral to its e-commerce platform, which is accessible via the Amazon.com website and mobile
applications. Given Amazon’s dominant market presence, this technology plays a crucial role in
enhancing user experience and driving sales across its vast product catalog.

Revenue Impact

Amazon’s e-commerce platform generates substantial revenue, with billions of product searches
conducted annually. The accused predictive search technology contributes significantly to this
revenue by improving the efficiency and accuracy of search results, thereby increasing the
likelihood of purchase. Assuming an average conversion rate of 3% for search queries and an
average order value of $45, the financial impact of the infringing technology is considerable.

Sales Figures and Market Penetration

Amazon’s e-commerce platform processes approximately 12 billion searches annually. With an
estimated conversion rate of 3%, this results in 360 million purchases. Assuming the average
order value is $45, the base revenue attributable to the predictive search technology is
approximately $16.2 billion annually. Given that the patents-in-suit have been in force and
allegedly infringed upon for at least five years, the cumulative revenue impact exceeds $81
billion.

Royalty Rate Calculation

To determine the potential damages, a reasonable royalty rate must be applied. Industry
standards for licensing such technology typically range from 1% to 5% of the attributable
revenue. Given the critical nature of the predictive search technology to Amazon’s business
model, a conservative royalty rate of 2.5% is reasonable. Applying this rate to the $81 billion in
attributable revenue results in potential damages of approximately $2.025 billion.

Patent Expiration and Future Sales

The patents in suit are set to expire on various dates, with the latest expiring in 2031. Assuming
the current rate of sales continues, Amazon is projected to generate an additional $48.6 billion in
revenue from the infringing technology over the next three years. Applying the 2.5% royalty rate
to this future revenue results in additional potential damages of $1.215 billion, bringing the total
estimated damages to approximately $3.24 billion.

Expert Damages Analysis

6

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

An expert will be required to derive the appropriate royalty rate for the damages calculation.
However, assuming a conservative royalty rate of 2.5%, the estimated lump sum damages would
be approximately $3.24 billion. This figure will be adjusted to account for the net present value
of future sales.

Historical Sales Data and Market Presence

Amazon’s historical sales data and projected revenue for the next several years indicate a strong
and growing market presence. Given Amazon’s extensive user base and the integral role of its
predictive search technology in driving e-commerce transactions, the financial impact of the
infringing technology is significant. Dr. William R. Latham III, with his extensive background in
economic impact analysis and expert testimony in patent infringement cases, will likely
emphasize Amazon’s market dominance and the substantial revenue generated by the accused
technology.

Projection of Sales Growth

Dr. Latham’s analysis will reassess the estimated lump sum damages favorably, highlighting the
significant financial impact of Amazon’s predictive search technology. He will likely point out
that Amazon’s projected revenue growth, driven by increasing e-commerce adoption and
expanding product offerings, underscores the importance of the infringing technology. His
expertise in econometrics and forecasting will be crucial in projecting future sales and adjusting
the damages calculation to reflect the net present value of these future revenues.

Market Conditions and Competitive Advantage

Considering Amazon’s sales growth and favorable market conditions, the estimated damages
may be conservative. Dr. Latham will argue that the actual damages could be higher, reflecting
the product’s increasing market share and revenue potential. He will likely draw on his
experience in analyzing the economic impacts of technology and innovation, emphasizing how
Amazon’s use of the infringing predictive search technology provides a competitive advantage
that boosts its overall market performance.

Expert Testimony on Royalty Rate

Dr. Latham’s extensive consulting experience with various industries, including technology and
e-commerce, will bolster his testimony on the appropriate royalty rate. He will provide a detailed
analysis comparing similar technologies and licensing agreements to justify the 2.5% royalty
rate. His previous work in calculating economic damages in patent infringement cases will lend

7

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

credibility to his assessment, ensuring that the royalty rate is grounded in industry standards and
reflective of the technology’s value to Amazon’s business.

Damages Conclusion

The evidence and calculations presented herein establish a strong case for substantial damages
due to the infringement of MasterObjects’ patents by Amazon’s predictive search technology.
The thorough analysis of Amazon’s sales data, market penetration, and the critical role of the
infringing technology in driving revenue support the calculation of significant damages.
MasterObjects is well-positioned to seek appropriate legal remedies to address this infringement
and secure compensation for the unauthorized use of its patented technology.

VII. Venue

The proposed lawsuit will be filed in the Southern District of New York (SDNY), which is a
proper and favorable venue for several reasons. First, Amazon conducts substantial business
within this jurisdiction, establishing sufficient ties to justify venue. Additionally, SDNY is
known for its efficient handling of patent litigation cases, offering a streamlined process and
knowledgeable judiciary that can expedite the resolution of the case.

It is anticipated that Amazon may attempt to transfer the venue to the Northern District of
California (NDCal), potentially arguing convenience or jurisdictional challenges. To counter this,
the plaintiff will emphasize the substantial connection Amazon has with SDNY, including
significant sales and business operations within this jurisdiction. Furthermore, the plaintiff’s
choice of forum is generally given considerable weight, particularly when the forum has a
legitimate interest in the matter.

MasterObjects intends to highlight several key points to maintain the chosen venue:

• Amazon’s substantial revenue generated from sales in the SDNY region.
• The presence of major corporate offices and fulfillment centers within SDNY.
• Public statements by Amazon highlighting the importance of the New York

market to their business operations.
• Previous litigation or legal engagements by Amazon within SDNY, demonstrating

their familiarity and readiness to litigate in this jurisdiction.

MasterObjects recognizes that Amazon may argue for transfer to NDCal on the grounds that it is
the location of their headquarters and many key witnesses. Amazon may also cite that NDCal is
a hub for technology companies, potentially arguing that it has a more relevant and specialized
legal environment for handling patent disputes involving complex technology.

8

CONFIDENTIAL WORK PRODUCT SUBJECT TO NDA

Should Amazon succeed in transferring the case to the Northern District of California,
MasterObjects intends to adapt by leveraging the following strategies:

• MasterObjects will emphasize the robust nature of its patents, which have already
withstood scrutiny in previous legal proceedings, including those in NDCal.

• The plaintiff will prepare to engage local counsel experienced in patent litigation
within NDCal to ensure effective representation.

• MasterObjects will also gather additional evidence and expert testimony that
underscores the validity of its claims and the substantial impact of Amazon’s alleged
infringement, which remains unaffected by the change in venue.

• The plaintiff will seek to expedite the proceedings by leveraging the efficient case
management systems in place within NDCal, aiming to minimize delays and move swiftly
towards a resolution.

By preparing for both scenarios—maintaining the case in SDNY or adapting to
NDCal—MasterObjects ensures a strategic and flexible approach to venue selection and
litigation strategy. This preparation underscores MasterObjects’ commitment to vigorously
defending its intellectual property rights and securing appropriate remedies for the alleged
infringement by Amazon.

9

Trials@uspto.gov Paper 26
571-272-7822 Date: January 11, 2021

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

UNIFIED PATENTS, LLC,

Petitioner,

v.

MASTEROBJECTS, INC.,
Patent Owner.

IPR2020-01201

Patent 10,311,073 B2

Before KARL D. EASTHOM, ROBERT J. WEINSCHENK, and
JON M. JURGOVAN, Administrative Patent Judges.

JURGOVAN, Administrative Patent Judge.

DECISION
Denying Institution of Inter Partes Review

35 U.S.C. § 314, 37 C.F.R. § 42.4

IPR2020-01201
Patent 10,311,073 B2

2

I. INTRODUCTION
A. Background and Summary

Petitioner, Unified Patents, LLC, filed a Petition requesting inter

partes review of claims 1, 2 and 4–12 of U.S. Patent No. 10,311,073 B2

(Ex. 1001, the “’073 Patent”). Paper 1 (“Petition” or “Pet.”). The Petition
was accorded a filing date of June 30, 2020. Paper 3. Patent Owner,
MasterObjects, Inc., filed a Preliminary Response (“Prelim. Resp.”) on
October 16, 2020. Paper 12. Petitioner filed a Reply on November 10,
2020. Paper 17 (public version). By Order dated December 1, 2020, we

authorized additional discovery and briefing concerning the real parties in
interest, and adjusted the briefing schedule accordingly. Paper 20. Pursuant
to the Order, Patent Owner filed a Sur-Reply (Paper 22) on December 2,
2020, and Petitioner filed a Sur-Sur-Reply (Paper 25) (public version) on
December 9, 2020.

Under 35 U.S.C. § 314(a), an inter partes review may not be instituted
unless the information presented in a petition “shows that there is a
reasonable likelihood that the petitioner would prevail with respect to at

least 1 of the claims challenged in the petition.” Upon consideration of the
Petition and accompanying exhibits and evidence, we determine Petitioner
has not established a reasonable likelihood that it would prevail with respect
to at least one challenged claim in the inter partes review. Therefore, we
deny institution of an inter partes review as to all of the challenged claims of
the ’073 Patent.

B. Real Parties in Interest

Petitioner identifies itself as the real party in interest. Pet. 86.

IPR2020-01201
Patent 10,311,073 B2

3

Patent Owner also identifies itself as the real party in interest. Patent
Owner’s Mandatory Notice, Paper 5, 2.

C. Related Matters

Patent Owner has asserted the ’073 Patent in the following cases:

Case Name Case Number Court
MasterObjects, Inc. v.
Facebook, Inc.

6:20-cv-00087-ADA W.D. Tex.

MasterObjects, Inc. v.
Amazon.com, Inc.

1:20-cv-3478-PKC S.D.N.Y.

Patent Owner’s Mandatory Notices, Paper 5, 2; Pet. 86-87.
The ’073 Patent is related to the patents at issue in the following

cases:

Case Name Case Number Court
MasterObjects, Inc. v
Google, Inc.

4:11-cv-01054 N.D. Cal.

MasterObjects, Inc. v.
Amazon.com, Inc.

3:11-cv-01055 N.D. Cal.

MasterObjects, Inc. v.
Microsoft Corp.

3:11-cv-02402 N.D. Cal.

MasterObjects, Inc. v.
Yahoo! Inc.

3:11-cv-02539 N.D. Cal.

MasterObjects, Inc. v.
eBay, Inc.

3:12-cv-00680 N.D. Cal.

eBay Inc. v.
MasterObjects, Inc.

18-2252 CAFC

MasterObjects, Inc. v
Google, Inc.

4:13-cv-04304 N.D. Cal.

MasterObjects, Inc. v.
Yahoo! Inc.

3:13-cv-04326 N.D. Cal.

MasterObjects, Inc. v
Google, Inc.

14-1148 CAFC

IPR2020-01201
Patent 10,311,073 B2

4

MasterObjects, Inc. v
Google, Inc.

4:15-cv-01775 N.D. Cal.

MasterObjects, Inc. v.
eBay, Inc.

4:16-cv-06824 N.D. Cal.

eBay, Inc. v.
MasterObjects, Inc.

IPR2017-00740 PTAB

Patent Owner’s Mandatory Notice, 2; Pet. 86–87.

D. The ’073 Patent

The ’073 Patent, titled “System and Method for Asynchronous
Retrieval of Information from a Server to a Client based on Incremental

User Input,” describes a system with a client part, a communication
protocol, and a server part. Ex. 1001, code (54), code (57). The server part
receives incremental text-based input from one or more objects in the client
part, and asynchronously returns matching information to the client part
from content sources such as databases or search engines. Id. at code (57).

 Figures 13A to 13D of the ’073 Patent, shown below, depict various
states 230 of an input element on the client part.

IPR2020-01201
Patent 10,311,073 B2

5

In Figure 13A, the user has not yet entered a query so the client part is not
connected to the server. Id. at 21:61–64, 22:2–4. In Figure 13B, as the user
enters characters of a query, the client part fires a query to the server. Id. at

22:2–12. In Figure 13C, the user has typed three characters (“Fer”). Id. at
22:21–24. In Figure 13D, the server responds with results corresponding to
the input characters, which are displayed in a drop-down list.

 Figure 12B of the ’073 Patent, shown below, depicts a screenshot of a
web page incorporating a client search object (“AutoComplete QuestField”).
Id. at 3:24–26, 21:22–24.

Figure 12B shows a screenshot of a device as it looks after the user enters

“Ferrari 3.” The screenshot lists various models corresponding to the
entered input, and shows images of those models. Ex. 1001, 21:31–39.

IPR2020-01201
Patent 10,311,073 B2

6

E. Challenged Claims

Claim 1 of the ’073 Patent is independent. Claims 2 and 4–12
depend, directly or indirectly, from claim 1. Claim 1 is set forth below with
annotated numbering of elements:

1. [1preamble] A method, comprising:

[1a] detecting, on a client computer, entry of a content search
query into a field on a web page by a user;

[1b] while the user is entering the content search query,
automatically sending a string representing an incomplete search
query to a server system comprising one or more computers;

[1c] receiving, by the server system, the string;

[1d] matching, by the server system, the string to entries in a
cache of query strings and search results based on content queries
received from multiple users, whereby cached search results contain a
subset of data from one or more content sources;

[1e] retrieving, by the server system, search result data for the
incomplete search query;

[1f] sending, by the server system to the client computer prior
to completion of the search query at the client, a message containing
information identifying the incomplete search query and at least a
portion of the search result data that identifies the content in a content
source;

[1g] asynchronously receiving, on the client computer, without
loading another web page and while the user is entering the content
search query into the field, the message, and

[1h] displaying at least a portion of the search result data on the
client computer and enabling the user to retrieve additional content
data corresponding to the search result.

Ex. 1001, 39:20–46.

IPR2020-01201
Patent 10,311,073 B2

7

F. Evidence

 Petitioner relies upon the following prior art references (see Pet. 1), as
well as the Declaration of Dr. Harley R. Myler (Ex. 1002)1:

Reference Exhibit Patent/Printed Publication
1005 Kamvar U.S. Publication 2005/0283468 A1, published

December 22, 2005
1006 Baluja U.S. Publication 2006/0122976 A1, published

June 8, 2006
1007 Kravets U.S. Patent 6,704,727, issued March 9, 2004

1008 Porter U.S. Publication 2007/0130131 A1, published
June 7, 2007

1009 Barr U.S. Patent 5,873,076, issued February 16,
1999

Patent Owner relies on the Declaration of Dr. Michael J. Pazzani
(Ex. 2028).

G. The Asserted Challenges

Petitioner asserts the following grounds of unpatentability:

Ground # Challenged Claims 35 U.S.C. § References/Basis
1 1, 6–8 and 11 103 Kamvar

2 2, 4, 5, 9, 10 and 12 103 Kamvar, Baluja

3 1, 2, 4, 5 and 8–11 103 Kravets, Porter, Barr

Pet. 1.

1 As discussed below, for purposes of this Decision, the claims at issue have
an effective filing date prior to the effective date of the AIA’s amendments
to 35 U.S.C. § 112 (September 16, 2012) and 35 U.S.C. §§ 102 and 103
(March 16, 2013). Thus, we apply the pre-AIA versions of §§ 102, 103, and
112 in this Decision (pre-Leahy-Smith America Invents Act, Pub. L. No.
112-29, 125 Stat. 284 (2011) (“AIA”)).

IPR2020-01201
Patent 10,311,073 B2

8

II. ANALYSIS OF CHALLENGES
A. Ground 1: Asserted Obviousness of Claims 1, 6–8 and 11 over

Kamvar
1. Legal Background

For a patent to claim priority to the filing date of an earlier
application, the specification of the earlier application must provide written
description and enablement support for the patent’s claims under 35 U.S.C.

§ 112 ¶ 1. That is, the earlier application must “contain a written description
of the invention, and the manner and process of making and using it, in such
full, clear, concise, and exact terms as to enable any person skilled in the art
to which it pertains, or with which it is most nearly connected, to make and
use the same.” 35 U.S.C. §§ 112 ¶ 1, 120. A patent may claim priority
through a chain of applications, but this requires continuity of written

description and enablement support under 35 U.S.C. § 112 ¶ 1 in each of the
applications back to the earliest asserted filing date. Id. This date may be
referred to as the “priority date” or “effective filing date” of the patent.

Priority should be considered in context with the respective burdens of
the parties. In an inter partes review, Petitioner bears the ultimate burden of
persuasion regarding unpatentability, which never shifts to Patent Owner.
Dynamic Drinkware, LLC v. National Graphics, Inc., 800 F.3d 1375, 1379.
Petitioner has the initial burden of production to show a reference is prior

art. Id. The burden of production then shifts to Patent Owner to refute
Petitioner’s argument by either showing the prior art does not actually render
the claims unpatentable or does not qualify as prior art (such as by showing
that the patent at issue is entitled to priority to an earlier application that pre-
dates a prior art reference). Id. The burden of production then shifts back to

Petitioner to respond to Patent Owner’s argument. Id. The Board then

IPR2020-01201
Patent 10,311,073 B2

9

evaluates all of the evidence and determines whether Petitioner has satisfied
its burden of persuasion regarding unpatentability. Id.

At the institution stage, the Board has applied a similar burden-
shifting approach with respect to the effective filing date of the challenged
claims. The framework we apply here was explained in Polaris Wireless,

Inc. v. TruePosition, Inc., IPR2013-00323, Paper 9 (PTAB Nov. 15, 2013):

In an inter partes review, the burden is on Petitioner to show a
reasonable likelihood that it would prevail on a ground of
unpatentability. With respect to entitlement to earlier effective
filing dates, the Patent Owner is not presumed to be entitled to
the earlier filing dates of ancestral applications which do not
share the same disclosure. But, the issue first has to be raised by
Petitioner in its petition, by identifying, specifically, the features,
claims, and ancestral applications allegedly lacking § 112, first
paragraph, written description and enabling disclosure support
for the claims based on the identified features. Then, the Patent
Owner has to make a sufficient showing of entitlement to earlier
filing date or dates, in a manner that is commensurate in scope
with the specific points and contentions raised by Petitioner.

Id. at 29; see also Huawei Techs. Co. v. Samsung Elecs. Co., IPR2017-
01980, Paper 9 at 9–10 (PTAB Feb. 27, 2018) (discussing Dynamic);

Franklin Elec. Co. v. Liberty Pumps, Inc., IPR2017-00113, Paper 14 at 12–
13 (PTAB Apr. 27, 2017) (same); Lupin Ltd. v. Pozen Inc., IPR2015-01775,
Paper 15 at 10–11 (PTAB Mar. 1, 2016) (same).

2. Effective Filing Date of the ’073 Patent

The ’073 patent’s filing date is February 17, 2017. Through a granted
petition to correct its claim of priority (see Ex. 1004, part 1 of 3, 1–25), the
’073 patent asserts priority benefits under 35 U.S.C. § 120 to earlier filing
dates as a continuation of U.S. Patent Application No. 12/176,984, filed July

21, 2008 (“’984 Application”), which is a continuation-in-part of

IPR2020-01201
Patent 10,311,073 B2

10

Application No. 11/257,912, filed October 25, 2005 (Ex. 1011, the “’912
Application”), which is a continuation-in-part of Application No.
09/933,493, filed August 20, 2001 (Ex. 1010, “’493 Application”).2

As mentioned, for purposes of institution, Petitioner has the burden of
showing sufficiently that the patents or publications relied upon are prior art.
See Dynamic, supra. In ground 1, Petitioner alleges “Kamvar was filed on

June 22, 2004, and published December 22, 2005, making it prior art to the
’073 patent under at least §102(e).” Pet. 5; Ex. 1005. Specifically,
Petitioner contends that “[t]he claims of the ’073 Patent are not entitled to
the . . . priority date of the 2001 [’493] application” because it “does not
provide support for ‘a cache of query strings and search results based on

content queries received from multiple users,’ as recited by claim 1 of the
’073 Patent, on which all other claims depend.”3 Pet. 3–5. Petitioner alleges
that the claimed feature was added as new matter in the later-filed ’912
Application and ’984 Application. Id. at 4.

To the contrary, Patent Owner contends that the “cache” limitation is
supported by the ’493 Application. Prelim. Resp. 10–22. Patent Owner
notes that, “[t]o claim priority to a prior application, that application must
‘describe an invention, and do so in sufficient detail that one skilled in the

art can clearly conclude that the inventor invented the claimed invention as

2 Although the ’493 application claims priority under 35 U.S.C. § 119(e) to
provisional application 60/951,850 filed July 25, 2007, Patent Owner does
not assert priority to the provisional filing date in this proceeding. See
generally Prelim. Resp.

3 For the sake of brevity, this claim element is referenced as the “cache”
limitation at points in the remainder of this decision.

IPR2020-01201
Patent 10,311,073 B2

11

of the filing date sought.’” Id. at 14 (citing Lockwood v. Am. Airlines, Inc.,
107 F.3d 1565, 1571–1572 (Fed. Cir. 1997)). “[T]he exact terms need not
be used in haec verba,” rather “the specification must contain an equivalent

description of the claimed subject matter.” Id.

 We find Patent Owner’s evidence shows sufficiently that the claim
limitation of “a cache of query strings and search results based on content

queries received from multiple users” is supported by the ’493 Application.
As Patent Owner notes, § 112 ¶ 1 support does not require literal support,
word for word, in the priority application, but only that the equivalent
description is present there. See Lockwood, supra.

Patent Owner notes that the “Content-based Cache” 222 (see Figure 2
of the ’493 Application) is defined as “[a] persistent store of Queries and
corresponding Result Sets executed by a Content Engine for a specific
Content Channel.” Prelim. Resp. 14–15 (citing Ex. 1010, 18, 27; Ex. 2028

¶ 38). This establishes that the ’493 Application provides § 112 ¶ 1 support
for a server-side cache of content queries and corresponding search results.

Patent Owner further notes that the ’493 Application states that “[e]nd

users of the present invention experience an unprecedented level of user-
friendliness accessing information that is guaranteed to be up-to-date while
being efficiently cached for speedy access as the number of simultaneous

users grows.” Prelim. Resp. 15 (citing Ex. 1010, 55; Ex. 2028 ¶ 39)
(emphasis added). This statement indicates that the cached queries are

received from multiple users. Patent Owner’s other evidence also supports
this conclusion. See Prelim. Resp. 18 (citing Ex. 1010, 34; Ex. 2028 ¶¶ 41–
42), 19–20 (Ex. 1010, 2–4, 13–14; Ex. 2028 ¶¶ 44–45).

IPR2020-01201
Patent 10,311,073 B2

12

Patent Owner reproduces Figure 8A of the ’493 Application, which
depicts objects “QoResultsCache” and “QoResultsCacheEntry” in cache
embodiments that include query strings and search result sets received from

multiple users. Prelim. Resp. 16-17 (citing Ex. 1010, Fig. 8, ¶ 117; Ex. 2028
¶¶ 46–47). Patent Owner thus demonstrates sufficiently that the cache
includes query strings and their corresponding search results from queries of
multiple users.

“When neither the PTO nor the Board has previously considered
priority, there is simply no reason to presume that claims in a CIP
application are entitled to the effective filing date of an earlier filed
application.” PowerOasis, Inc. v. T-Mobile USA, Inc., 522 F.3d 1299, 1305

(Fed. Cir. 2008). Here, Patent Owner has demonstrates that the ’493
Application supports the “cache” limitation under § 112 ¶ 1. Prelim. Resp.
21–22 (citing Ex. 2028 ¶¶ 50–54). Further, Patent Owner’s expert testifies
that support for the “cache” limitation is present in each application from the
’493 Application to the ’073 Patent. Prelim. Resp. 21–22 (citing Ex. 2028
¶¶ 50–54). In addition, each application in the chain of priority applications

incorporates the prior applications by reference, so the ’073 Patent
cumulates the written description and enablement disclosures of the earlier
applications. Ex. 1001, code (63), 1:7–30; Ex. 1004, part 1 of 3, 125 (the
’984 Application), 167, 198 ¶ 1, 201 ¶ 1 (the ’912 Application), part 2 of 3,
135–136 ¶ 2 (the ’073 Patent).

For the foregoing reasons, Patent Owner’s evidence shows
sufficiently that the ’493 Application provides support under § 112 ¶ 1 for
the claim limitation of “a cache of query strings and search results based on

content queries received from multiple users” as recited in claim 1, and

IPR2020-01201
Patent 10,311,073 B2

13

thereby all dependent claims, of the ’073 Patent. As Petitioner’s only
priority contention alleged with specificity is that the “cache” limitation is
missing from the ’493 Application, and Patent Owner has shown sufficiently

that the equivalent disclosure is present there, Patent Owner has shown
sufficiently that the ’073 Patent is entitled to a priority date of August 20,
2001, for purposes of this Decision.

3. Conclusion for Ground 1

In ground 1, Petitioner asserts Kamvar as prior art against claims 1, 6–
8, and 11 of the ’073 Patent. Pet. 1, 5–38. Petitioner asserts that Kamvar,
filed June 22, 2004 and published December 22, 2005, is prior art under 35
U.S.C. § 102(e). Pet. 5; Ex. 1005, code (22), code (43). Petitioner argues
that the ’493 application, to which the ’073 Patent claims priority, fails to

support claim 1’s limitation of “a cache of query strings and search results

based on content queries received from multiple users” under § 112 ¶ 1.
Patent Owner, however, sufficiently demonstrates that the ’073 Patent
supports the “cache” limitation of claim 1 under § 112 ¶ 1. Therefore, in a
manner that is commensurate in scope with the specific points and

contentions raised by Petitioner, Patent Owner sufficiently shows that the
’073 Patent is entitled to priority of the ’493 Application’s filing date of
August 20, 2001, which pre-dates Kamvar’s filing date of June 22, 2004.

Accordingly, Petitioner fails to meet its burden to show that Kamvar
is prior art to the ’073 Patent. For this reason, ground 1 of the Petition fails
to present a reasonable likelihood of prevailing in showing that at least one
claim of the ’073 Patent is unpatentable.

IPR2020-01201
Patent 10,311,073 B2

14

B. Ground 2: Asserted Obviousness of Claims 2, 4, 5, 9, 10 and 12 over
Kamvar and Baluja

In ground 2, Petitioner asserts Kamvar in combination with Baluja as
prior art against claims 2, 4, 5, 9, 10 and 12 of the ’073 Patent. Pet. 1, 38–
55. As noted above in Section II.A, Petitioner argues that the “cache”
limitation of claim 1 of the ’073 Patent lacks support under § 112 ¶ 1 in the
’493 Application. Patent Owner, though, has shown sufficiently that the

“cache” limitation of claim 1 of the ’073 Patent has written description and
enablement support under § 112 ¶ 1 and thus, for purposes of this Decision,
is entitled to the priority date of August 20, 2001 established by the ’493
Application’s filing. Because Kamvar’s filing date is June 22, 2004 and thus
after the ’073 Patent’s priority date of August 20, 2001, Petitioner fails to

demonstrate sufficiently that Kamvar is prior art to the ’073 Patent.

Petitioner asserts that Baluja, filed December 3, 2004 and published
June 8, 2006, is prior art to the ’073 Patent under 35 U.S.C. § 102(e).

Pet. 38; Ex. 1006, code (22), code (43). As discussed above, for purposes of
this Decision, the ’073 Patent’s priority date is August 20, 2001, which is
before Baluja’s filing date of December 3, 2004. Therefore, Petitioner does
not meet its burden to show that Baluja is prior art to the ’073 Patent.
Prelim. Resp. 30–31; Ex. 1006.

Accordingly, ground 2 of the Petition fails to present a reasonable
likelihood that at least one claim of the ’073 Patent is unpatentable.

C. Ground 3: Asserted Obviousness of Claims 1, 2, 4, 5 and 8–11 over
Kravets, Porter and Barr

In ground 3, Petitioner asserts the combination of Kravets, Porter and
Barr against claims 1, 2, 4, 5 and 8–11 of the ’073 Patent. Pet. 1, 56–86.
Petitioner asserts that Porter, a published application, claims priority to a

IPR2020-01201
Patent 10,311,073 B2

15

provisional application filed on November 21, 2000, and is prior art to the
’073 Patent under § 102(e). Pet. 56; Ex. 1008, code (22), code (43).
Petitioner contends Dr. Myler’s testimony shows § 112 ¶ 1 support in the

Porter provisional application (Ex. 1013) for Porter’s claim 7 in asserting
that Porter is prior art to the ’073 Patent as of the Porter provisional
application’s filing date. Pet. 56–57 (citing Ex. 1002 ¶¶ 82–83).

Patent Owner contends that the Petition must show (1) that Porter’s
provisional application provides § 112 ¶ 1 support for the claims of Porter
(the published application); and (2) that Porter’s provisional application
supports the allegations in the Petition. Prelim. Resp. 34–35 (citing

Dynamic, 800 F.3d at 1380, 1382; Intex Recreational Corp v. Team

Worldwide Corp., IPR2018-00859, Paper 128 at 26 (PTAB Oct. 21, 2019);
In re Giacomini, 612 F.3d 1380, 1383 (Fed. Cir. 2010)).

 Patent Owner further contends

Petitioner cites to Porter as teaching at least one limitation of
every challenged claim in Ground 3. However, there is not any
overlap between the cited portions of Porter and the provisional.
Throughout Ground 3, Petitioner cites Porter Figs. 2, 4 and ¶¶5,
15, 19, 20, 23, 24, 27, 30, 32, 33, 39, 41. None of those figures
or paragraphs are in the provisional. Compare EX1008 with
EX1013. At no point does Petitioner attempt to identify an
equivalent disclosure in the provisional. Thus, for this additional
reason, Petitioner has not shown that any of the Porter disclosure
it cites is entitled to the priority date of the provisional. This is
fatal to Ground 3.

Id. at 38.

Although Petitioner attempts to show that Porter’s provisional
application supports claim 7 (Ex. 1002 ¶¶ 82–83), we agree with Patent
Owner that Petitioner fails to show that the provisional application supports
the portions of Porter relied upon to challenge the ’073 Patent’s claims. See

IPR2020-01201
Patent 10,311,073 B2

16

Giacomini, 612 F.3d 1380, 1383 (Fed. Cir. 2010) (“an applicant is not
entitled to a patent if another’s patent discloses the same invention, which
was carried forward from an earlier U.S. provisional application or U.S. non-

provisional application”). As Patent Owner notes above, there are
significant differences between Porter and its provisional application, and
one cannot assume that disclosure in Porter is necessarily present in the
provisional. Compare Ex. 1008 and Ex. 1013. Therefore, Petitioner fails to
meet its burden to show that Porter’s provisional application supports the
portions of Porter’s published application relied upon in ground 3. See

Dynamic, 800 F.3d at 1380, 1382.
In ground 3, Petitioner relies on Porter to disclose search-engine data

and displayable data, which allows for displaying search results immediately
without requiring selection of a link, for limitations [1d] to [1h] of the ’073
Patent. Pet. 64–80. Without Porter, Petitioner’s mapping fails to show that

each element of the claims is disclosed in the prior art because Kravets’s
HTML/JavaScripts are not the displayable search result data recited in
limitations [1d] to [1h] of the ’073 Patent. Pet. 64. Petitioner relies on Barr
merely to disclose a “query identification number” to identify a search query
of a user. Pet. 77. The Petition does not show sufficiently that the

combination of Kravets and Barr, without Porter, renders obvious all the
limitations of claim 1. In addition, Petitioner relies on Porter alone, or with
Kravets, to teach the limitations of claims 2, 4, 5 and 8–11 of the ’073
Patent. See Pet. 80–86. Without Porter, Petitioner’s mappings fail to show
sufficiently the obviousness of these dependent claims.

Accordingly, Petitioner fails to show that Porter is prior art to the ’073

Patent, and ground 3 of the Petition fails to present a reasonable likelihood
that at least one claim of the ’073 Patent is unpatentable.

IPR2020-01201
Patent 10,311,073 B2

17

III. REMAINING MATTERS
Because we have decided to deny the Petition for the reasons

discussed above in Section II, we do not reach the remaining issues raised in
the briefings. These matters include arguments concerning motivation to

combine the alleged prior art references (Prelim. Resp. 42–43, 48); claim
elements alleged to be missing from the asserted prior art (Prelim. Resp. 23–
30, 31–34, 39–49); alleged lack of particularity in the challenges (Prelim.
Resp. 29, 31, 33–34, 39, 46, 48); discretionary denial under § 314(a)
(Prelim. Resp. 49–54; Reply 10; Sur-Reply 5); and alleged failure to name

all real parties in interest under § 312(a)(2) (Prelim. Resp. 54–63; Reply 1–
9; Sur-Reply 1–5; Sur-Sur-Reply 1–2).

IV. CONCLUSION
In light of the foregoing, the Petition fails to demonstrate a reasonable

likelihood of prevailing on its assertions that claims 1, 2 and 4–12 of the
’073 Patent would have been obvious under 35 U.S.C. § 103. Accordingly,

we decline to institute trial on claims 1, 2 and 4–12 on the grounds of
unpatentability asserted by Petitioner.

V. ORDER
For the foregoing reasons, it is ORDERED that the Petition for inter

partes review is denied.

IPR2020-01201
Patent 10,311,073 B2

18

For Petitioner:
Trenton Ward
A. Grace Mills
FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, LLP
Trenton.ward@finnegan.com
Gracie.mills@finnegan.com

Ashraf A. Fawzy
Jung Hahm
UNIFIED PATENTS, LLC
afawzy@unifiedpatents.com
jung@unifiedpatents.com

For Patent Owner:

Leslie V. Payne
Christopher L. Limbacher
HEIM PAYNE & CHORUSH, LLP
lpayne@hpcllp.com
climbacher@hpcllp.com

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

PLAINTIFF MASTEROBJECTS, INC’S PRELIMINARY INFRINGEMENT

CONTENTIONS

In accordance with Section 2 of the Order Governing Proceedings – Patent Case (ECF 29),

Plaintiff MasterObjects, Inc. (“MasterObjects” or “Plaintiff”), hereby: (1) provides its preliminary

infringement contentions in the form of a chart—attached as Exhibit A—setting forth where in the

accused instrumentalities each element of the asserted claims are found; (2) identifies the priority

date (i.e., the earliest date of invention) for each asserted claim; and (3) provides an accompanying

production which includes documents evidencing conception and reduction to practice for each

claimed invention and copies of the file histories for each patent-in-suit:

I. Disclosure of a Preliminary Infringement Contentions Chart:

The patents-in-suit are (1) U.S. Patent No. 8,539,024 (the “’024 Patent”); (2) United States

Patent No. 9,760,628 (the “’628 Patent”); (3) United States Patent No. 10,394,866 (the “’866

Patent”); and (4) United States Patent No. 10,311,073 (the “’073 Patent”) (collectively the

“Patents-in-Suit”). The accused instrumentalities are the social media platforms offered by

Defendant Amazon.com, Inc. (“Amazon” or “Defendant”) through, e.g., its Amazon.com web

application, through its Amazon mobile applications, including but not limited to, those for iOS

and Android operating systems, and through any other Amazon desktop or mobile applications.

MASTEROBJECTS, INC.,

Plaintiff,

v.

AMAZON.COM, INC.,

Defendant.

Civil Action No. 5:20-cv-08103-WHA

JURY TRIAL DEMANDED

These accused instrumentalities include both client-side and server-side functionality used to

process, send, receive, cache, and retrieve search results asynchronously. As described in Exhibit

A and Plaintiff’s complaint, the accused instrumentalities include the Amazon search

features known as Advanced Search Looking Glass. Exhibit A sets forth representative examples

showing where in the accused instrumentalities each element of each asserted claim is found.

Amazon infringed, and is infringing, each claim in Exhibit A. Amazon’s infringing activities

constitute at least direct infringement under 35 U.S.C. § 271(a), literally or under the doctrine of

equivalents. As alleged in MasterObjects’ complaint, Amazon’s infringement is willful.

If a claim of a Patent-in-Suit is not identified by MasterObjects in Exhibit A, then that claim

is not presently asserted by MasterObjects against Amazon.

Pursuant to the Order Governing Proceedings – Patent Case, the infringement contentions

hereby disclosed by MasterObjects are preliminary. See ECF 29, § 2, App’x A at row 1 & n. 4.

Pursuant to the Order Governing Proceedings – Patent Case, the deadline to serve final infringement

contentions is over eight months away. See id., App’x A at row 15.

These disclosures, including Exhibit A, are based on the present state of MasterObjects’

knowledge, without the benefit of any discovery. Further, MasterObjects’ investigation is ongoing,

and no Markman order has been entered in this action. MasterObjects reserves all rights to

supplement, amend, and/or otherwise modify its infringement contentions.

The parties have not exchanged claim terms or proposed claim constructions, Defendant has

not served its preliminary invalidity contentions and accompanying production, and the Markman

hearing is over six months away. MasterObjects is not required to disclose claim construction

positions at this time, and does not. These disclosures, inclusive of Exhibit A, should not be

construed as setting forth MasterObjects’ claim construction positions. To the extent Defendant

asserts that a particular MasterObjects claim construction position is implied by these disclosures,

including Exhibit A, MasterObjects denies and objects to any such assertion. MasterObjects

reserves all rights to modify its claim construction positions.

II. Disclosure of the Priority Date:

 The ’024 Patent was filed on February 6, 2012. The ’024 Patent is a continuation of U.S.

Patent No. 8,112,529 (the ’529 Patent), which was filed on August 20, 2001. The asserted ’024

Patent claims are entitled to the benefit of the ’529 Patent’s filing date. The asserted claims of the

’024 Patent were conceived prior to the filing of the ’529 Patent. The asserted ’024 Patent claims

were conceived no later than November 11, 2000. The earliest priority date currently claimed by

MasterObjects for the asserted ’024 Patent claims is November 11, 2000.

The ’628 Patent was filed on September 16, 2013. The ’628 Patent is a continuation of the

’024 Patent, which is a continuation of the ’529 Patent. The ’529 Patent was filed on August 20,

2001. The asserted ’628 Patent claims are entitled to the benefit of the ’529 Patent’s filing date.

The asserted claims of the ’628 Patent were conceived prior to the filing of the ’529 Patent. The

asserted ’628 Patent claims were conceived no later than November 11, 2000. The earliest priority

date currently claimed by MasterObjects for the asserted ’628 Patent claims is November 11, 2000.

The ’866 Patent was filed on December 22, 2016. The ’866 Patent is a continuation of the

’628 Patent, which is a continuation of the ’024 Patent, which is a continuation of the ’529 Patent.

The ’529 Patent was filed on August 20, 2001. The asserted ’866 Patent claims are entitled to the

benefit of the ’529 Patent’s filing date. The asserted claims of the ’866 Patent were conceived prior

to the filing of the ’529 Patent. The asserted ’866 Patent claims were conceived no later than

November 11, 2000. The earliest priority date currently claimed by MasterObjects for the asserted

’866 Patent claims is November 11, 2000.

The ’073 Patent was filed on February 17, 2017. The ’073 Patent is related to the ’529

Patent as follows: the ’073 Patent is a continuation of U.S. Application No. 12/176,984; U.S.

Application No. 12/176,984 is a continuation-in-part of U.S. Patent No. 7,752,326; U.S. Patent No.

7,752,326 is a continuation-in-part of the ’529 Patent. The ’529 Patent was filed on August 20,

2001. The asserted ’073 Patent claims are entitled to the benefit of the ’529 Patent’s filing date.

The asserted claims of the ’073 Patent were conceived prior to the filing of the ’529 Patent. The

asserted ’073 Patent claims were conceived no later than November 11, 2000. The earliest priority

date currently claimed by MasterObjects for the asserted ’073 Patent claims is November 11, 2000.

These disclosures are based on the present state of MasterObjects’ knowledge. Further,

MasterObjects’ investigation is ongoing. MasterObjects reserves all rights to modify the positions

taken in these initial disclosures.

III. Disclosure of Accompanying Production:

 These disclosures include an accompanying document production that includes documents

evidencing conception and reduction to practice for each claimed invention and copies of the file

histories for each Patent-in-Suit. The accompanying production is subject to and without waiving

the objections and reservations set forth herein. The Bates number ranges for the accompanying

production are: MOBJECTS_0000001 – MOBJECTS_0000943; MOBJECTS_0044288 –

MOBJECTS_0045474; and MO_000001 – MO_002349.

 Masterobjects objects to the production of any documents protected by the attorney-client

privilege, the work-product doctrine, or any other immunities from discovery.

 In producing the accompanying documents, MasterObjects does not admit or concede the

relevancy, materiality, authenticity, or admissibility as evidence of any of these documents. All

objections to the use, at trial or otherwise, of any document produced are hereby expressly reserved.

MasterObjects makes these disclosures without the benefit of discovery. Further,

MasterObjects’ investigation is ongoing. MasterObjects produces these documents without

prejudice to its right to produce additional documents after considering documents obtained and

reviewed throughout discovery and further investigation.

IV. Confidentiality.

 Pursuant to Section “Protective Order” of the Order Governing Proceedings – Patent Case,

MasterObjects designated portions of these disclosures, including Exhibit A and various documents

in the accompanying production, “confidential.” MasterObjects identified the material designated

confidential by marking it “CONFIDENTIAL,” “HIGHLY-CONFIDENTIAL ATTORNEYS’

EYES ONLY,” or with some other similar confidentiality marker. For the avoidance of doubt,

under Section “Protective Order” of the Order Governing Proceedings – Patent Case, a document

marked “CONFIDENTIAL” is to be treated in the same way as a document marked “HIGHLY-

CONFIDENTIAL ATTORNEYS’ EYES ONLY.” Pursuant to the Order Governing Proceedings

– Patent Case, given no Protective Order has yet been issued by the Court, disclosure of the

designated materials is limited to Amazon’s outside attorneys of record and the employees of such

outside attorneys.

 Dated: May 15, 2020 Respectfully submitted,

/s/ Darrell R. Atkinson

Spencer Hosie, pro hac vice,

(CA Bar No. 101777)

shosie@hosielaw.com

Diane S. Rice, pro hac vice,

(CA Bar No. 118303)

drice@hosielaw.com

Brandon C. Martin, pro hac vice,

(CA Bar No. 269624)

bmartin@hosielaw.com

Darrell Rae Atkinson, pro hac vice,

(CA Bar No. 280564)

datkinson@hosielaw.com

Francesca M.S. Germinario, pro hac vice,

(CA Bar No. 326208)

fgerminario@hosielaw.com

HOSIE RICE LLP

600 Montgomery St., 34th Floor

San Francisco, CA 94111

415.247.6000

Fax: 415.247.6001

Leslie V. Payne

(TX State Bar No. 00784736)

lpayne@hpcllp.com

Alden G. Harris, pro hac vice,

(TX State Bar No. 24083138)

aharris@hpcllp.com

HEIM, PAYNE & CHORUSH, LLP

1111 Bagby St., Ste. 2100

Houston, Texas 77002

Telephone: (713) 221-2000

Facsimile: (713) 221-2021

CERTIFICATE OF SERVICE

I, Francesca M.S. Germinario, am a citizen of the United States of America and am

employed in the County of San Francisco, State of California. I am over the age of 18 years and

am not a party to the within action. My business address is Hosie Rice LLP, Transamerica

Pyramid, 34th Floor, 600 Montgomery Street, San Francisco, California, 94111.

On May 15, 2020, I served the following:

• PLAINTIFF MASTEROBJECTS, INC’S PRELIMINARY

INFRINGEMENT CONTENTIONS (INCLUSIVE OF EXHIBIT A)

via email, and the following by electronic file transfer (DropBox):

• AN ACCOMPANYING DOCUMENT PRODUCTION

at South San Francisco, California, addressed to the following parties:

Douglas E. Lumish

Jeffrey G. Homrig

Clara Wang

Latham & Watkins LLP

140 Scott Drive

Menlo Park, CA 94025

Doug.Lumish@lw.com

Jeff.Homrig@lw.com

Clara.Wang@lw.com

Joseph H. Lee

Latham & Watkins LLP

650 Town Center Drive, 20th Floor

Costa Mesa, CA 92626

Joseph.Lee@lw.com

Tiffany C. Weston

Rachel Weiner Cohen

Latham & Watkins LLP

555 Eleventh Street, NW, Suite 1000

Washington, D.C. 20004

Tiffany.Weston@lw.com

Rachel.Cohen@lw.com

Paul Weinand

Latham & Watkins LLP

200 Clarendon Street

Boston, MA 02116

Paul.Weinand@lw.com

Paige Arnette Amstutz

Scott Douglas & McConnico LLP

303 Colorado Street, Suite 2400

Austin, TX 78701

pamstutz@scottdoug.com

Attorneys for Defendant Amazon.com, Inc.

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct.

DATED: May 15, 2020 /s/ Francesca M.S. Germinario

Francesca M.S. Germinario

US008539024B2

(12) United States Patent (10) Patent No.: US 8,539,024 B2
Smit et al. (45) Date of Patent: *Sep. 17, 2013

(54) SYSTEMAND METHOD FOR 5,444,823 A 8, 1995 Nguyen
ASYNCHRONOUS CLIENT SERVER SESSION 3.63 A 1 g E. et al.

SC
COMMUNICATION 5,715,443 A 2/1998 Yanagihara

(75) Inventors: Mark H. Smit, Maarssen (NL); Stefan 3. A 3. thm
M. van den Oord, Best (NL) 5,765,168 A 6/1998 Burrows

5,778,381 A 7/1998 Sandifer
(73) Assignee: MasterObjects, Inc. (NL) 5,802,292 A 9/1998 Mogul

5,805,911 A * 9/1998 Miller T15,234
(*) Notice: Subject to any disclaimer, the term of this 5,845,300 A * 12/1998 Comer et al. 71.5/2O3

patent is extended or adjusted under 35 5,896,321 A 4, 1999 Miller
U.S.C. 154(b) by 0 days. 5,978,800 A 1 1/1999 Yokoyama et al.

6,006,225 A 12, 1999 B tal. This patent is Subject to a terminal dis- OWa. a
claimer. (Continued)

21) Appl. No.: 13/366,905 FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 9 EP 1054329 11, 2000

JP 807 5272 5, 1983
(22) Filed: Feb. 6, 2012 JP H10-105562 4f1998

JP 2001-154789 6, 2001
(65) Prior Publication Data

US 2012/O284329 A1 Nov. 8, 2012 OTHER PUBLICATIONS

Related U.S. Application Data Andrew Clinick, Remote Scripting, Apr. 12, 1999, MSDN. pp. 1-6.*

(63) Continuation of application No. 09/933,493, filed on (Continued)
Aug. 20, 2001, now Pat. No. 8,112,529.

(51) Int. Cl Primary Examiner — Barbara Burgess
G06F 15/16 (2006.01) (74) Attorney, Agent, or Firm — Fliesler Meyer LLP

(52) U.S. Cl.
USPC 709/203; 709/224; 709/227; 709/228;

709/229 (57) ABSTRACT
(58) Field of Classification Search The i - e invention provides a session-based bi-directional multi

USPC 709/203, 217, 219, 224, of tier client-server asynchronous information database search
See application file for complete search histo and retrieval system for sending a character-by-character

pp p ry. string of data to an intelligent server that can be configured to
(56) References Cited immediately analyze the lengthening string character-by

U.S. PATENT DOCUMENTS
4,255,796 A 3, 1981 Gabbe et al.
4,648,044 A 3/1987 Hardy
4,823,310 A 4, 1989 Grand

character and return to the client increasingly appropriate
database information as the client sends the string.

37 Claims, 17 Drawing Sheets
wgli

is:

39

waii

iSeyes

- 212 -213

Eag
a 2.3 -3;

(ca.
{&stii.

286- 3i --39s

388 Cofirosa
21g

Sessio Qaste: Sire

is- ii
x

sex ifertica. iisage visagar at SatisticsS&re
Syraciicater

236ws

this:
Access Miodie

38
ra

e
8scist:

US 8,539,024 B2
Page 2

(56) References Cited 7,856,432 B2 12/2010 Tesch et al.
7,890,516 B2 2/2011 Zarzar Charur et al.
7,890,526 B1 2/2011 Brewer U.S. PATENT DOCUMENTS 7,900,228 B2 3/2011 Starket al.

6,070,184 A 5, 2000 Blount 7,941,819 B2 5, 2011 Starket al.
6,078,914 A 6, 2000 Redfern 8, 131,258 B2 3/2012 Smith et al.
6,169,986 B1 1/2001 Bowman 8, 135,729 B2 3/2012 Brewer et al.
6.253,228 B1 6, 2001 Ferris 2001/0049676 A1 12/2001 Kepler
6,275,820 B1 8/2001 Navin-Chandra 2002/0049756 A1* 4/2002 Chua et al. 7O7/4
6,278,992 B1 8/2001 Curtis et al. 707/711 2002fOO65879 A1 5, 2002 Ambrose et al.
6,292,806 B1 9/2001 Sandifer 2002fOO69122 A1 6, 2002 Yun et al.
6,347,312 B1 2/2002 Byrne 2002/0129012 A1* 9, 2002 Green 707/3
6,356,905 B1 3/2002 Gershman et al. TO5/26.8 2002/01385.71 A1 9, 2002 Trinon et al.
6,381,593 B1 4/2002 Yano 2002/013864.0 A1 9, 2002 Raz et al.
6,397.212 B1 5, 2002 Biffar 2003/0033288 A1 2/2003 Shanahan et al.
6,408.294 B1 6, 2002 Getchius 2003/0041058 A1 2/2003 Ibuki et al.
6.421,675 B1 7/2002 Ryan 2003/0061200 A1 3/2003 Hubert et al.
6,434,547 B1 8, 2002 Mishelevich et al. 2003/007 1850 A1 4/2003 Geidl
6,484.162 B1 1 1/2002 Edlund 2003/O120554 A1 6/2003 Hogan et al.
6,496,833 B1 12/2002 Goldberg et al. 2004/0093562 A1 5, 2004 Diorio et al.
6,539,379 B1 3/2003 Vora et al. 1f1 2004/O141011 A1 7/2004 Smethers et al.
6,539,421 B1 3/2003 Appelman et al. 2004/O142720 A1 7/2004 Smethers
6,564,213 B1 5/2003 Ortega et al. 1f1 2004/0205448 A1 10, 2004 Grefenstette et al.
6,578,022 B1 6/2003 Foulger 2005/00221 14 A1 1/2005 Shanahan et al.
6,629,092 B1 9, 2003 Berke 2005/005.5438 A1 3, 2005 Matti
6,629,132 B1 9/2003 Ganguly 2005/O120005 A1 6/2005 Tesch et al.
6,633,874 B1 10/2003 Nusbickel 2005/0283468 A1 12/2005 Kamvar et al.
6,647.383 B1 1 1/2003 August 2006,0004843 A1 1/2006 Tafoya et al.
6,671,681 B1 12/2003 Emens et al. 2006, OO26636 A1 2/2006 Starket al.
6,687,696 B2 2/2004 Hofmann 2006, OO26638 A1 2/2006 Starket al.
6,697,849 B1 2/2004 Carlson 2006, OO31880 A1 2/2006 Starket al.
6,704,727 B1 3, 2004 Kravets 2006,004.1927 A1 2/2006 Starket al.
6,704,906 B1 3, 2004 Yankovich et al. 2006/0184546 A1* 8, 2006 Yano et al. 707/10
6,732,090 B2 5/2004 Shanahan et al. 2007/0050351 A1 3/2007 Kasperski et al.
6,772,150 B1 8, 2004 Whitman 2007, OOSO352 A1 3, 2007 Kim
6,778,979 B2 8, 2004 Grefenstette et al. 2007.0143262 A1 6/2007 Kasperski
6,801,190 B1 10/2004 Robinson et al. 2007/0288648 A1 12/2007 Mehanna et al.
6,820,075 B2 11/2004 Shanahan et al. 2008, 0071561 A1 3, 2008 Holcombe
6,823,514 B1 1 1/2004 Degenaro 2008. O147788 A1 6/2008 Omoigui
6,829,607 B1 12/2004 Tafoya et al. 1f1 2010/0267362 A1 10, 2010 Smith et al.
6,832,218 B1 12/2004 Emens 2011/0106831 A1 5/2011 Zarzar Charur et al.
6,859,908 B1 2/2005 Clapper 2011/O1732.17 A1 7/2011 Kasperski
6,862,713 B1 3, 2005 Kraft 2011/0320472 A1 12/2011 Griffith et al.
6,912,715 B2 6, 2005 Gao
6,915,279 B2 7/2005 Hogan et al. OTHER PUBLICATIONS
6,928,425 B2 8, 2005 Grefenstette et al.
6,981,215 B1 12/2005 Lindhorst Anonymous, Ajax (Programming), Wikipedia.org, XP-00240 1064.
7,000,179 B2 2/2006 Yankovich et al. Retrieved from the Internet: <http://www.en.wikipedia.org/wiki/
7,039,635 B1 5, 2006 Morgan Ajax. Sub-(programming).
7,043,530 B2 5/2006 Isaacs International Searching Authority, International Search Report for
7,058,944 B1 6/2006 Sponheim PCT/US02/25729, Nov. 5, 2002, 3 pages.
7,089,228 B2 8/2006 Arnold Harless. Membership Database on USA Gvmnastics Online. 1996. 5 7,100,116 B1 8, 2006 Shafrir arless, Membersnip latabase on ymnastics Online,
7. 7.432 B1 10, 2006 Shanahan et al. pages Retrieved from the Internet: URL: http://usa-gymnastics.org/
777s is B2 2, 2007 Nair publications/technique/1996/9/membership-query.html.
7,181,459 B2 2/2007 Grant Nareddy, Introduction to Microsoft Index Server, Oct. 15, 1997, 9
7,185,271 B2 2/2007 Lee pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
7,216.292 B1 5/2007 Snapper en-us/library/ms951563(printer).aspx.
7,240,045 B1 7/2007 Bushee Clinick, Remote Scripting, Apr. 12, 1999, Microsoft Corporation, 6
7,251,775 B1 7/2007 AStala et al. pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
7,284, 191 B2 10/2007 Grefenstette et al. en-us/library/ms951563(printer).aspx.
7,308.439 B2 12/2007 Baird Masterobjects, Inc., Introducing QuestObjects, 2006, XP002496891,
7,383.299 B1 6/2008 Hailpernet al. TO9,203 25 pages Retrieved from the Internet: URL: http://www.questobjects.
7,424,510 B2 9, 2008 Gross et al. 7.467.131 B1 12/2008 Gharachorloo masterobjects.com/documents/go-introducing.pdf.
7.499.940 B1 3, 2009 Gibbs European Patent Office, European Search Report for European Patent
75.12,654 B2 3/2009 Tafoya et al. Application No. EP08252534.6-1225, Oct. 14, 2008, 9 pages.
7,526.481 B1 4/2009 Cusson European Patent Office, European Examination Report for European
7.5500 is B2 7, 2009 Matti Patent Application No. EP02763441.9, 4 pages.
7,610, 194 B2 10/2009 Bradford European Patent Office, European Search Report for European Patent
7,647,225 B2 1/2010 Bennett et al. Application No. EP02763441.9, 3 pages.
7,647,349 B2 1/2010 Hubert et al. Widjaja, Communication Networks, Fundamental Concepts and Key
7,672.932 B2 3/2010 Hood Architecture, 2004, pp. 315-316 and 611-612, McGraw-Hill, 2nd Ed.
7,676,517 B2 3/2010 Hurst-Hiller Marsch, Remote Scripting, XP002401062, Retrieved from the
7,769,757 B2 8, 2010 Grefenstette et al. Internet: <http://www.microsoft. com/germany/msdn/library/web/
7,788,248 B2 8/2010 Forstall RemoteScripting.mspx?pf-=true).
7,836,044 B2 11/2010 Kamvar et al. Anonymous. Using the XML HTTP Request Object,
7,840,557 B1 1 1/2010 Smith XP-00240 1063, Retrieved from the Internet: <http://www.jibbering.
7,840,589 B1 1 1/2010 Holt com/2002/4/httpre quest.2002.html>.

US 8,539,024 B2
Page 3

Doherty, Web-based E-Mail, May 29, 2000, 3 pages. Retrieved from:
http://www.networkcomputing.com/1110/1110f3.html?Is=NCJS
111Obt.
Cheong, et al., A Boolean Query Processing with a Result Cache in
Mediator Systems, Advances in Digital Libraries, May 22-24, 2000,
10 pages.
Jakobsson, Autocompletion in Full Text Transaction Entry: A
Method for Humanized Input, 1986, vol. 17.
Livingston, Windows 98 Secrets, 1998, pp. 232-235.
Markatos, et al. On Caching Search Engine Results, May 2000, 23
pageS.
Krishnamurthy, et al., Web Protocols and Practice: HTTP/1.1, Net
working Protocols, Caching and Traffic Measurement, 2001.
Kientzle, A JAVA Applet Search Engine, Feb. 1999.
Homer, XMLin IE5 Programmers Reference, 1999.
Xia, et al. Supporting Web-Based Database Application Develop
ment, 1999, 8 pages.
Chen, et al., The Implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and
Matching, Oct. 1993, 21 pages.
Unknown Author, Netscape Communicator for Solaris 4.7 Release
Notes, Aug. 20, 1999, 5 pages.
Oracle International Corporation, iPlanet Directory Server 4.11
LDAP Setup and Configuration Guide, Chapter 3, 2001, 14 pages.
Netscape Communications Corporation, Netscape Directory Server
4.1 Deployment, Administrators Guide, 1999.
Kapitskaia, et al., Evolution and Revolution in LDAP Directory
Caches, Advances in Database Technology—EDBT, 2000, pp. 202
216.

Glick, Global Address Book and LDAPUI Proposal, 2001.
Unknown Author, Mozilla 0.9.1 Release Notes, 2001, 23 pages.
Giovetti, Microsoft Money, COMPUTE!, Jul. 1992, p. 105, Issue
142.
Microsoft Corporation, MSN Hotmail: From Zero to 30 Million
Members in 30 Months, Feb. 8, 1999.
Qualcomm, Inc., QualcommExtends Internet E-mail Presence to the
Web, Dec. 10, 1997.
Johnson, et al., A Hypertextual Interface for a Searcher's Thesaurus,
Jun. 11-13, 1995, 15 pages.
Deadmond, Address Book: What a Concept, Jun. 1, 1999, 2 pages.
Hassan, Stanford Digital Library Interoperability Protocol, 1997, 42
pageS.
Buyukkoten, Focused Web Searching with PDAs, May 15-19, 2000,
21 pages.
O'Brien, The New Domino R5 Directory Catalog: An Administra
tor's Guide, Nov./Dec. 1998.
Beaulie, et al., Okapi at TREC-5, Jan. 31, 1997, 23 pages.
Jones, Graphical Query Specification and Dynamic Result Previews
for a Digital Library, 1998, 9 pages.
Jones, Dynamic Query Result Previews for a Digital Library, Jun.
1998, 3 pages.
Unkown Author, Using Netscape Communicator at Lehigh, 15 pages,
retrieved from the World Wide Web: http://web.archive.org/web/
2000 1002224731/http:/www.lehigh.edu/~inhelpffaq qansfiles/
nSfall 2000-2.htm.

* cited by examiner

U.S. Patent Sep. 17, 2013 Sheet 1 of 17 US 8,539,024 B2

iii vs. {test jects
s:

103 carr Quest(bjects
Seyer

its or f (uest Objects
Seyite

FIG.

U.S. Patent Sep. 17, 2013

3:Sessissisi

w swar

issise:

Sheet 2 of 17

ississyies

SE N. stics Sier8

ises sis:

US 8,539,024 B2

U.S. Patent Sep. 17, 2013 Sheet 3 of 17 US 8,539,024 B2

-- () |

3)2 an Y -

Y- 3OS

--- --- ha. N 5.

305 --- - Nebra Ska

07-Nevada

FIG 3A

U.S. Patent Sep. 17, 2013 Sheet 4 of 17 US 8,539,024 B2

NC E.
United States of Ameri
Charlotte Greensboro
Raleigh

hcardinal (bird)
Last of the Mohicans V

Thesa/Sounds/Prefs/

314-N-

United States of Ameri United States of Ameri - ,6
USA Charlotte 317

Greensboro
Raleigh

hcardinal (bird) 3.18
v Last of the Mohicans w

319-N Recent Terms waThesa/Sounds-Prefs/ - 320
lin lin

FIG. 3C

U.S. Patent Sep. 17, 2013 Sheet 6 of 17 US 8,539,024 B2

initialize(ient
{3&stes'

Sa'aaaaaaaaaaaaaxwea'aasaaraxxxxxx-rarasaaaaaa-warrasarass-a-a-a-a-N-aa-ra-aasaasaxxx-xx-x-xxerxesars

six}x &vest te: {reactivate
Cieri (Resis 8ws:st 8xxx w8:r

53 16ampeaena
Yiestroyed/
A Yes Si is ox yes

stroy Client
W (Russies

FG. A

w3.it irst &yers issy:
Cies Cuestes

U.S. Patent Sep. 17, 2013 Sheet 7 of 17 US 8,539,024 B2

-601
segister sing

{ies (Yisrair

quester N
Ndestroyed 1ses Client Controller

—4.
tieregister sing

/- 61
results in

Scient eace
69 or yes

y -
get results

seric aptist stiffer
chaige Bessage

3

feat cacias

U.S. Patent Sep. 17, 2013 Sheet 8 of 17 US 8,539,024 B2

results N
N received? --

sier tests
its racie

F.G. 6B

US 8,539,024 B2 Sheet 10 of 17 Sep. 17, 2013 U.S. Patent

øã888 puas

asg? `~9% 33$34883 & 32ã

U.S. Patent Sep. 17, 2013 Sheet 11 of 17 US 8,539,024 B2

Qoirety
ra&yStrig: Sising
-38&isies. String
~$8wsasis iss creastexypes: Riype
rises: as
swattsstia: grie:
gristgir:wsi is:

-ssings: :String
sawsaras; at
servire: {{Service: -sesy 3838sy
-&etapixxx yix:
retaiNataster Sitings; ioag
assist& Risis:
-sessissis is
careers: int -resistSeiri: Sigexissi

Š. strings

-8xpission its&isits:
-ietritissae: 3:38
waiiae: Sirias key; Siririg
listiii. i.ississixxii.

SS
-88&S: Q&8&Se:
-service: ReService
-quaiišer Strisis
iypes syp&s \

...ass. -- is sy. -- x. irst333i: Sirississir
33xxixiatixis waii is: 3.

is&Sists -8::::::::iištviriyy:8 it s
RSisis ... S. sax. . . . & - ests Seiss&Sig&; it: s

-type : y R a. -833X$833six:iii.3& st
r -cis:thiaxississyriakersy: is: 'w'

-changelisterers: Qex aesterChargetilisteneri raggiest;3fi :8&tists: Stsiag
waiiiiraticists:xyisrisci; scies:

service -&ighest Resise:Resisesiri Rigtecsa:
satistèegisteri: is sixeciras

satisfaraits&sy Vaisrai: s:

*isassississix . Siristg
F.G. 8 if

U.S. Patent

SA as

Sep. 17, 2013 Sheet 12 of 17 US 8,539,024 B2

Object Model: base

&{Resis: 888&Svett
- N3' 8 FRER CANER). Ni
-RESL. SRT CLRRENT CEixNGE: N
RESLI SET SE.EXTE). CEiSNESEI: NY
griestes (Roisies&r

<& Sistessex: 8:-
systerits::iisix8&

questercia::ged, voisi
resistSs:

sississississis:

address: JRi.

seat its & liest Yais six

FIG. 8A

x8 assiisi's
-q&sySising: Stsiris:
xxiiies. String

{}ResistSet
& resissists

is&siis axis
ei:Rsities: (Resuits acaesiy

$883 is set&

sie&aits 3:88: (Rošesrits(acie
-q8&siegs, 38:3&stes
-stašistissississississist&; is:

givešistry

sissisis

Qaisage:Record

U.S. Patent Sep. 17, 2013 Sheet 13 of 17 US 8,539,024 B2

Object Model: client

base:Qoceatrolier

QoClientController (a(iieaQuester
... client Ouester

ActiveComponent

-etjieat{uesters: ya(iient (Rester

FIG. SB

U.S. Patent

g
:

s x

3. 3.

s

ax

s

Sep. 17, 2013

resssssssssssssssssssw awaxaasax WWWW---w

Sheet 14 of 17

www.

S. s

Ras

ar

US 8,539,024 B2

Sr.

S.

U.S. Patent Sep. 17, 2013 Sheet 15 Of 17

issie&is:

~$3383& Sisirs
is&s is is:

is: cestrict(fairie

*
{x}x-sis: $6.888&

i-aire, Sising
-iesespita: String
query Stringviii.&igii: is
-giery Sising Registrixpressions: Siring
-query Saiagiiites. String
-grassy waiviator: };}{}rsey Waikiais:
Resuit Reserty: Stri's
types: {:} y &
-tire visaiyaasaiei assisterygii is:

-8&ntest A&x&sšixiii: {Roi exsie:
eOriers), Qoiesia

3&ty waii ixity:
sciatex

sixt{x};xteri Sessics: iri.

FG. I.

sistentiatives

s &

x

:{S$ R s s s s:

execrate{Riesyi: {&B&sal Set

US 8,539,024 B2

syndicates

&eistent
i888&

U.S. Patent Sep. 17, 2013

{}{Service systicator Syndicator
cassis: $3rs (8xxxicati83:
staixie. ixese:

-pricisaginies: X \i.
aaase: String
-&YR testigia&i{gis-383&. Siris:
acaate:rgia:i-esiriasswesci: String
askix&isitioisixties: sixiè88

Rawasawww.ww.XXXX-X sease assausawasawa's

{}ssageSiaissessics:
records OssageRecord
isee; ServiceStatisties, ye&sie&n
-ixee{iesii is is
keep (iientiis&xiStatistics. ixxiests

-i.eeps iesiiii Statistics: x}oiest

Sheet 16 of 17 US 8,539,024 B2

Object Model: service

3. * $3ras: Strists
passweri. String
-sists: sixties. {{Sisi Setities: SSS

... uses

service service OScivic
-Si3:ii)3&: 388&
existic}}siais: $88

~gistryi.isit; it
-queryi.irativese: ini
sessiii.33: ... it
resisi.irrsitiveset at
prisis.&iew&i, txxies:
reusiasters&isit ist
history Aiewed: xxxies:
risis:yi.iirii, iii.

sarawassassarawww.

xxx's sis -Stissey. Siirii;
sirigy sities: Sisis:
swissResisitSet it:
{{{388w&issa S&: iii.
sisters is fissi, 8&
at&ississist: i)x is:

-cises isgias ξ }{xxie&is
&&sis& 333i:8:
xiies: iii. xxxix&t.
rappiseiaiois-assie: String
activars;x}:3&aii, Siriag
sis: {}ssis&r

U.S. Patent Sep. 17, 2013 Sheet 17 of 17 US 8,539,024 B2

- Wy 3 * ' - F - a ... R$ 3 or y f ses Y S f Rii

fe: N Appies
Asia;irst Syricisrepaizer" Ser's

Appicatios, fo
&y 8: ossiries

farest textsServer

m-m-moon was a ran

Application. Wei
Wris systs Stassissi

S$838

FIG 9

US 8,539,024 B2
1.

SYSTEMAND METHOD FOR
ASYNCHRONOUS CLIENT SERVER SESSION

COMMUNICATION

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica
tion Ser. No. 09/933,493, filed on Aug. 20, 2001 entitled:
SYSTEMAND METHOD FORASYNCHRONOUS CLI
ENT SERVER SESSION COMMUNICATION', by Mark
H. Smit, etal, now U.S. Pat. No. 8,112,529, issued on Feb. 7,
2012, which is incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The invention relates generally to client-server communi
cation systems, and particularly to a session-based bi-direc
tional multi-tier client-server asynchronous search and
retrieval system.

BACKGROUND OF THE INVENTION

A primary task of computer systems is to manage large
quantities of information, generally referred to as data. The
first computers typically stored data using off-line methods,
for example by using punch cards and other primitive means.
As built-in or on-line storage Solutions became more afford
able, data were instead stored in central memory banks. The
first enterprise-wide computer systems consisted of central
computers containing central data storage, and a large num
ber of user terminals that accessed this server data by sending
input and receiving output as characters to be displayed or
printed at the terminal. Although these systems had a primi
tive user interface and data access became increasingly
slower as the number of users grew, these systems neverthe
less handled enterprise data with ease and great security.
The first servers, often referred to as mainframes or mini

computers, ran on proprietary operating systems. Terminals
usually had large input buffers where input was only checked
against or committed to the server after entering text into a
page or form. Many systems only displayed the character
entered after it was received and confirmed by the server.
Faster servers and more modern server operating systems,
such as Unix and VMS, offered several advantages in that
users could receive immediate feedback after each character
was typed.

At the beginning of the 1980s decade, the growing popu
larity of microcomputers and personal workstations made it
possible to store data locally. Enterprise data was distributed
over networks of computer systems. To access information it
was no longer necessary to have a continuous connection to
central databases, and instead it was possible to copy infor
mation to a personal computer, edit and work with it, and then
save it back to a file or database server later. Most microcom
puters worked with data in logical chunks or files. This
brought a lot of power to end users, but introduced problems
in managing the large quantity of enterprise data that was no

10

15

25

30

35

40

45

50

55

60

65

2
longer stored as a unique entity in one place. For example, a
file that was being edited by one user could not usually be
accessed or modified by other users at the same time. It was
also difficult to manage multiple copies of the same data.
Toward the end of the 1980's faster microcomputers and

networks made it practical to work with enterprise data in
smaller chunks than files. One example of this new technol
ogy was the development of Structured Query Language
(SQL) relational databases which made it possible to divide
software programs into a Client tier and a Server tier, that
communicated with each other over a network. Client-server
computing thus made it possible to store information cen
trally, yet manage and work with it locally. In the client-server
paradigm, the client systems concentrated on offering a user
friendly interface to server data, while the server systems
were able to handle many client systems at once while safely
managing enterprise data.

However, the increasing client-server computing intro
duced its share of problems. Protocols used to communicate
between client and server became increasingly complex and
difficult to manage. Enterprise IT departments needed
increasingly greater resources to manage the proprietary
implementations of client operating systems, server database
systems and middleware protocols connecting the various
tiers of client-server systems. Data was no longer stored in
one place but was required to be managed within a distributed
network of systems. Client-server systems also lacked a
major advantage of mainframes: in a client-server system any
changes to the data on the server werent immediately
updated on the client.

Starting in the 1990s, the Internet has allowed businesses,
organizations, and other enterprises to easily make informa
tion available to users without the complex architecture that
client-server Systems typically require. Today, an increasing
number of Software applications are moving their data and
logic or functional processes back to the server tier, from
which they can be accessed from the Internet by a wide
variety of clients, including thin and verythin-clients, which
typically consist of Internet browsers or Small applications
(applets) whose sole responsibility is providing an interface
to the user. In many ways, Internet computing (often referred
to as e-commerce) has brought back the data-handling advan
tages of mainframes. Within the e-commerce environment
data that change on the server are immediately available to
clients that access the data through the Internet (world-wide)
or through an intranet (enterprise-wide).

Unfortunately, the rise of Internet commerce has also given
rise to some of the disadvantages associated with mainframe
technology. Most Internet connections that present data to the
user or client process use the HyperText Transfer Protocol
(HTTP) which is inherently “session-less.” This means that,
for example, there is no totally reliable way for the server to
automatically update the client display once the server data
change. It also means that the server only checks the validity
of the client or user input after the user sends back or submits
an entire input form. This apparent disadvantage has also
played an important role in the Success of the Internet:
because HTTP connections are session-less, they require
much less processing power and much less memory on the
server while the user is busy entering data. Thus, Internet
applications running on web servers can be accessed by mil
lions of people. Because HTTP and related Internet-based
client-server systems do not provide continuous access to
server data, Systems sometimes incorporate lookup tables and
pre-defined values that are cached locally. For example, a list
of possible countries to be selected by a user of a web page can
be sent to the user's computer when that page is first sent to

US 8,539,024 B2
3

the user and used thereafter for Subsequent country selec
tions. Client-server applications often pre-read the data from
the server the moment an application or application window
is opened, in order to present users with selection lists the
moment they need them. This poses problems for data that
frequently changes over time since the client system may
allow users to selector enter data that is no longer valid. It also
poses problems for large selection lists whose transmission to
the client may take a long time.

To address this some systems incorporate a local cache of
the data frequently accessed by the user. A web browser may,
for example be configured to remember the last pages a user
visited by storing them in a local cache file. A clear disadvan
tage of keeping such a local cache is that it is only useful as
long as the user stays on the same client computer system.
Also, the local cache may include references to web pages
that no longer exist.
Some other systems with limited network bandwidth (like

cell phones or personal organizers) can be deployed with
built-in databases (such as dictionaries and thesauri), because
it would be impractical to wait for the download of an entire
database, which is needed before the data is of any use. This
has the disadvantage that data stored in the device may no
longer be up-to-date because its really a static database.
Also, the cost of cellphones and personal organizers is greatly
increased by the need for megabytes of local storage. Another
important consideration is that keeping valuable data in any
local database makes it vulnerable to misuse and theft. What
is needed is a mechanism that addresses these issues that
allows a client-server system to retain some element of a
session-based system, with its increase in performance, while
at the same time offering a secure communication mechanism
that requires little, if any, local storage of data.

Other attempts have been made to tackle some of the prob
lems inherent with traditional computer system interfaces,
and particularly with regard to user session administration
and Support. These attempts include the auto-complete func
tion systems such as used in Microsoft Internet Explorer, the
spell-as-you-go Systems such as found in Microsoft Word,
and the wide variety of client-server session managers such as
Netopia’s Timbuktu and Citrix Winframe.
Auto-Complete Functionality
Many current systems provide a mechanism to auto-com

plete words entered into fields and documents. This auto
complete functionality is sometimes called type-ahead or
predictive text entry. Many web browsers such as
Microsoft's Internet Explorer application will automatically
finish the entry of a URL, based on the history of web sites
visited. E-mail programs including Microsoft Outlook will
automatically complete names and e-mail addresses from the
address book and a history of e-mails received and sent.
Auto-completion in a different form is found in most graphi
cal user interfaces, including operating systems such as
Microsoft Windows and Apple Mac OS, that present lists to
the user: When the user types the first character of a list entry,
the user interface list will automatically scroll down to that
entry. Many software development tools will automatically
complete strings entered into program Source code based on a
known taxonomy of programming-language dependent key
words and function names or class names previously
entered by the developer. Some cell phones and personal
organizers also automatically type-ahead address book
entries or words from a built-in dictionary. Auto-complete
functionality facilitates easy entry of databased on prediction
of what options exist for the user at a single moment in time
during entry of data.

5

10

15

25

30

35

40

45

50

55

60

65

4
Checking as You go
More and more word processing programs (most notably

Microsoft Word and certain e-mail programs) include so
called spell checking as you type. These programs auto
matically check the spelling of words entered while the user
is typing. In a way, this can be seen as deferred auto-com
plete, where the word processor highlights words after they
were entered, if they don't exist in a known dictionary. These
spell checking programs often allow the user to add their own
words to the dictionary. This is similar to the history lists
that are maintained for the auto-completion of URLs in a web
browser, except that in this case the words are manually added
to the list of possible completions by the user.
Software Component Technologies

Software component technologies have provided a mea
Sure of component generation useful in client/server systems.
One of these technologies is OpenDoc, a collaboration
between Apple Computer, Inc. and IBM Corporation
(amongst others) to allow development of Software compo
nents that would closely interact, and together form applica
tions. One of the promises of OpenDoc was that it would
allow small developers to build components that users could
purchase and link together to create applications that do
exactly what the users want, and would make existing bloat
ware applications (notably Microsoft Office and Corel's
WordPerfect Office/Corel Office) redundant, but the technol
ogy was dropped several years ago in favor of newer tech
nologies such as CORBA (Common Object Request Broker
Architecture), developed by the Object Management Group
to allow transparent communication and interoperability
between software components.

Object-oriented languages and even non-object-oriented
(database) systems have used component technologies to
implement technical functionality. The NeXTStep operating
system from NeXT Computer, Inc. (which was later acquired
by Apple Computer, Inc. and evolved into the Mac operating
system Mac OS X) had an object-oriented architecture from
its original beginnings, that allowed software developers to
create applications based on predefined, well-tested and reli
able components. Components could be passive user inter
face elements (such as entry fields, Scroll areas, tab panes etc)
used in application windows. But components could also be
active and show dynamic data (such as a component display
ing a clock, world map with highlight of daylight and night,
ticker tape showing Stock symbols, graphs showing computer
system activity, etc.). The NeXT operating system used object
frameworks in the Objective C language to achieve its high
level of abstraction which is needed for components to work
well. Later, Sun Microsystems, Inc. developed the Java lan
guage specification in part to achieve the same goal of
interoperability. To date, Java has probably been the most
Successful open (operating system independent) language
used to build software components. It is even used on certain
web sites that allow Java applets on the user's Internet
browser to continuously show up-to-date information on the
client system.

WebObjects, an object-oriented technology developed by
Apple Computer, Inc. is an Internet application server with
related development tools, which was first developed by
NeXT Computer, Inc. WebObjects uses object oriented
frameworks that allow distribution of application logic
between server and client. Clients can be HTML-based, but
can also be Java applets. WebObjects uses proprietary tech
nology that automatically synchronizes application objects
between client and server. The layer that synchronizes data
objects between the client and the server is called the Enter
prise Object Distribution (EODistribution), part of Apple's

US 8,539,024 B2
5

Enterprise Objects Framework (EOF), and is transparent to
the client Software components and the server Software com
ponents.
Session Management

Both Netopia’s Timbuktu remote access systems, and Cit
rix, Inc.'s Winframe terminal server product, allow some
element of remote access to server applications from a client
system. These products synchronize user data and server data,
transparently distributing all user input to the server and
return all server (display) output to the client. Timbuktu does
this with very little specific knowledge about the application
and operating system used. This allows it to transparently
work on both Microsoft Windows and Mac OS platforms.
Technologies similar to Timbuktu do exist and perform the
same kind of screen sharing. For example, the Virtual Net
work Computing (VNC) system is one example of an open
Source Software program that achieves the same goals and
also works with Linux and Unix platforms.

Citrix Winframe has taken the same idea a step further by
incorporating intimate knowledge of the Microsoft Windows
operating system (and its Win32 APIs) to further optimize
synchronization of user input and application output on the
server. It can then use this detailed knowledge of the
Microsoft Windows APIs to only redraw areas of the screen
that it knows will change based on a user action: for example,
Winframe may redraw a menu that is pulled down by the user
without needing to access the server application because it
knows how a menu will work.
Software Applications

Several application providers have also built upon these
technologies to provide applications and application services
of use to the end-user. These applications include computer
based thesauri, on-line media systems and electronic ency
clopediae.
The International Standards Organization (as detailed fur

ther in ISO 2788-1986 Documentation Guidelines for the
Establishment and Development of monolingual thesauri and
ISO 5964-1985 Documentation Guidelines for the Estab
lishment and Development of multilingual thesauri) deter
mines Suggested specifications for electronic thesauri, and
thesaurus management software is now available from
numerous software vendors world-wide. However, most sys
tems have clear limitations that compromise their user-friend
liness. Most commonly this is because they use a large third
party database system, Such as those from Oracle Software,
Inc. or Informix, Inc. as a back-end database. This means that
any thesaurus terms that are displayed to the user are fetched
from the database and then presented inauser interface. If one
user changes the contents of the thesaurus, other users will
only notice that change after re-fetching the data. While of
little concern in Small or infrequently changing environ
ments, this problem is a considerable one within larger orga
nizations and with rapidly updated content changes, for
example in media publishing applications when thesaurus
terms are being linked to new newspaperor magazine articles.
This type of work is usually done by multiple documentalists
(media content authors) simultaneously. To avoid mixing up
terms linked to articles, each documentalist must be assigned
a certain range of articles to enrich (which in one instance
may be the act of adding metadata and thesaurus terms to a
document). Clearly, in these situations there is a great need for
live updates of data entered by these users, but a similar need
exists for all client-server database programs.

SUMMARY OF THE INVENTION

The invention provides a system that offers a highly effec
tive solution to the aforementioned disadvantages of both

10

15

25

30

35

40

45

50

55

60

65

6
client-server and Internet systems by providing a way to
synchronize the data entered or displayed on a client system
with the data on a server system. Data input by the client are
immediately transmitted to the server, at which time the
server can immediately update the client display. To ensure
Scalability, systems built around the present invention can be
divided into multiple tiers, each tier being capable of caching
data input and output. A plurality of servers can be used as a
middle-tier to serve a large number of static or dynamic data
Sources, herein referred to as “content engines.”
The present invention may be incorporated in a variety of

embodiments to Suit a correspondingly wide variety of appli
cations. It offers a standardized way to access server data that
allows immediate user-friendly data feedback based on user
input. Data can also be presented to a client without user
input, i.e. the data are automatically pushed to the client. This
enables a client component to display the data immediately,
or to transmit the data to another Software program to be
handled as required.
The present invention can also be used to simply and

quickly retrieve up-to-date information from any string-based
content Source. Strings can be linked to metadata allowing
user interface components to display corresponding informa
tion Such as, for example, the meaning of dictionary words,
the description of encyclopedia entries or pictures corre
sponding to a list of names.
Embodiments of the present invention can be used to create

a user interface component that provides a Sophisticated
“auto-completion' or “type-ahead' function that is extremely
useful when filling out forms. This is analogous to simple,
client-side auto-complete functions that have been widely
used throughout the computing world for many years. As a
user inputs data into a field on a form, the auto-complete
function analyzes the developing character string and makes
intelligent Suggestions about the intended data being pro
vided. These suggestions change dynamically as the user
types additional characters in the String. At any time, the user
may stop typing characters and select the appropriate Sugges
tion to auto-complete the field.

Today’s client-side auto-complete functions are useful but
very limited. The invention, however, vastly expands the use
fulness and capabilities of the auto-complete function by
enabling the auto-complete data, logic and intelligence to
reside on the server, thus taking advantage of server-side
power. Unlike the client-side auto-complete functions in cur
rent use, an auto-complete function created by the present
invention generates suggestions at the server as the user types
in a character string. The Suggestions may be buffered on a
middle tier so that access to the content engine is minimized
and speed is optimized.
The simple auto-complete schemes currently in popular

use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the Suggestions bestored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete Suggestions from data
bases on the server. Using the present invention, the Sugges
tions generated by the server may, at the option of the appli
cation developer, be cached on the middle tier or on the client
itself to maximize performance.
The present invention provides better protection of valu

able data than traditional methods, because the data is not
present on the client until the moment it is needed, and can be
further protected with the use of user authentication, if nec
essary.

US 8,539,024 B2
7

The present invention is also useful in those situations that
require immediate data access, since no history of use needs
to be built on the client before data is available. Indeed, data
entered into an application by a user can automatically be
made available to that user for auto-completion on any other
computer, anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
built into programming languages, user interface components
or web components. The present invention can be integrated
into and combined with existing applications that access
server data. Using content access modules, the present inven
tion can access any type of content on any server.

In the detailed description below, the present invention is
described with reference to a particular embodiment named
QuestObjects. QuestObjects provides a system for managing
client input, server queries, server responses and client out
put. One specific type of data that can be made available
through the system from a single source (or syndicate of
sources) is a QuestObjects Service. Other terms used to
describe the QuestObjects system in detail can be found in the
glossary given below.

QuestObjects is useful for retrieval of almost any kind of
string-based data, including the following QuestObjects Ser
Vice examples:
Intranet Us

Access system for database fields (for lookup and auto
complete services)

Enterprise thesauri system.
Enterprise search and retrieval systems.
Enterprise reference works.
Enterprise address books.
Control systems for sending sensor readings to a server that

responds with appropriate instructions or actions to be taken.
Internet Use

Client access to dictionary, thesaurus, encyclopedia and
reference works.

Access to commercial products database.
Literary quotes library.
Real-time Stock quote provision.
Access to real-time news service.
Access to Internet advertisements.
Access to complex functions (bank check, credit card Vali

dation, etc).
Access to language translation engines.
Access to classification schemes (eg. Library of Congress

Subject Headings).
Access to lookup lists Such as cities or countries in an order

form.
Personal address books.
Personal auto-complete histories.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a general outline of a system incorporating
the present invention.

FIG.2 shows a schematic of a system in accordance with an
embodiment of the invention.

FIG. 3A shows a variety of stages in the usage of a sample
Questlet implementation in accordance with an embodiment
of the invention.

FIG. 3B shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

FIG. 3C shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

5

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 4 shows a sequence diagram illustrating the use of a

system in accordance with an embodiment of the invention.
FIG. 5A shows a first thread flow chart illustrating the

interface between an active component and an embodiment of
the invention.

FIG. 5B shows a second thread flow chart illustrating the
interface between an active component and an embodiment of
the invention.

FIG. 6A shows a first thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 6B shows a second thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 7A shows a first thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 7B shows a second thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 8A shows an object model of an embodiment of the
present invention, displaying the base part.

FIG. 8B shows an object model of an embodiment of the
present invention, displaying the client part.

FIG. 8C shows an object model of an embodiment of the
present invention, displaying the server part.

FIG. 8D shows an object model of an embodiment of the
present invention, displaying the service part.

FIG. 9 shows a schematic of an application proxy system
that enables the use of the invention in various client environ
mentS.

DETAILED DESCRIPTION

Roughly described, the invention provides a session-based
bi-directional multi-tier client-server asynchronous informa
tion database search and retrieval system for sending a char
acter-by-character string of data to an intelligent server that
can be configured to immediately analyze the lengthening
string character-by-character and return to the client increas
ingly appropriate database information as the client sends the
String.
The present invention includes a system that offers a highly

effective solution to an important disadvantage of both client
server and Internet systems: The present invention provides a
standardized way to immediately synchronize the data
entered or displayed on a client system with the data on a
server system. Data input by the client is immediately trans
mitted to the server at which time the server can immediately
update the client display. To ensure Scalability, systems built
around the present invention can be divided into multiple
tiers each capable of caching data input and output. Any
number of servers can be used as a middle-tier to serve any
number of static or dynamic data sources (often referred to as
“Content Engines”).
The present invention is useful for an extremely wide vari

ety of applications. It offers a standardized way to access
server data that allows immediate user-friendly data feedback
based on user input. Data can also be presented to a client
without user input, i.e. the data is automatically pushed to
the client. This enables a client component to display the data
immediately or to transmit it to another Software program to
be handled as required.
The present invention is also particularly useful for assis

tance in data entry applications, but can also be used to simply
and quickly retrieve up-to-date information from essentially
any string-based content source. Strings can be linked to
metadata allowing user interface components to display cor
responding information Such as the meaning of dictionary
words, the description of encyclopedia entries or pictures
corresponding to a list of names.

US 8,539,024 B2

In Some embodiments, the present invention can be used to
create a user interface component that provides a Sophisti
cated “auto-completion' or “type-ahead function that is
extremely useful when filling out forms. Simple, client-side
auto-complete functions have been widely used throughout
the computing world for many years. As a user inputs data
into a field on a form, the auto-complete function analyzes the
developing character string and makes “intelligent” sugges
tions about the intended data being provided. These sugges
tions change dynamically as the user types additional char
acters in the string. At any time, the user may stop typing
characters and select the appropriate Suggestion to auto-com
plete the field.

Today's client-side auto-complete functions are very lim
ited. The present invention vastly expands the usefulness and
capabilities of the auto-complete function by enabling the
auto-complete data, logic and intelligence to reside on the
server thus taking advantage of server-side power. Unlike the
client-side auto-complete functions in current use, an auto
complete function created by the present invention pushes
Suggestions from the server as the user types in a character
string. Using the present invention, the Suggestions may be
buffered on a middle tier so that access to the content engine
is minimized and speed is optimized.
The simple auto-complete schemes currently in popular

use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the Suggestions bestored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete suggestions from data
bases on the server. Using the present invention, the Sugges
tions generated by the server may, at the option of the appli
cation developer, becached on the middle tier or one the client
itself to maximize performance.
The present invention provides better protection of valu

able data because the data is not present on the client until the
moment it is needed and can be further protected with a user
authentication mechanism, if necessary.
The present invention is useful for immediate data use,

since no use history must be built on the client before data is
available. Indeed, data entered into an application by a user
can automatically be made available to that user for auto
completion on any other computer anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
built into programming languages, user interface components
or web components. The present invention can be integrated
into, and combined with, existing applications that access
server data. Using Content Access Modules, the present
invention can access any type of content on any server.

In the detailed description below, an embodiment of the
present invention is referred to as QuestObjects, and provides
a system of managing client input, server queries, server
responses and client output. One specific type of data made
available through the system from a single source (or syndi
cate of sources) is referred to as a QuestObjects Service.
Other terms used to describe the QuestObjects system in
detail can be found in the glossary below:

GLOSSARY

Active Component Part of a software program that accesses
the QuestObjects system through one or more Questers.
Active Components may provide a user interface, in which
case they’re referred to as Questlets.

10

15

25

30

35

40

45

50

55

60

65

10
AppHostSynchronizer Part of the QuestObjects Server that
allows the Application Proxy access to data in Server
Questers.
Application Proxy—An optional method implemented by the
QuestObjects Server allowing the use of the QuestObjects
system in client systems that do not allow the
QuestObjects—Client components to communicate to the
application server or web server directly. Uses the AppHost
Synchronizer on the QuestObjects Server to send selected
strings and metadata to the application server or web server
using a QuestObjects Adaptor.
Client Controller A QuestObjects Controller on a QuestO
bjects Client.
Client Quester—A Quester on a QuestObjects Client that has
a Server Quester as its peer.
Client Session—A temporary container of information
needed to manage the lifespan of Server Questers in a
QuestObjects Server.
Content Access Module—A part of a Content Channel that
provides a standardized API to access specific types of Con
tent Engines.
Content-based Cache—A persistent store of Queries and cor
responding Result Sets executed by a Content Engine for a
specific Content Channel.
Content Channel—A part of the QuestObjects system that
provides one type of information from one Content Engine.
Consists of a Query Manager and a Content Access Module,
linking a Content Engine to the QuestObjects system.
Content Engine—A dynamic data source that provides data
to a Content Channel by accessing its own database or by
querying other information systems.
Query Filter. A filter specified by a Query Manager in a
specific Service used to tell the Server Quester to interpret
incoming strings before they are sent to the Service as a
QuestObjects Query.
Query Manager—An intelligent part of a Content Channel
that interprets QuestObjects Queries and sends them to a
Content Engine (through a Content Access Module) or
retrieves results from the Content-based Cache in a standard
ized way. The Query Manager can also send a list of Query
Patterns and Query Filters to the Server Quester, allowing the
Server Quester to match and filter new Queries before they are
sent to the Content Channel.
Query Pattern—A string-matching pattern (Such as a unix
style grep pattern) specified by a Query Manager in a specific
Service used to tell the Server Quester to interpret incoming
strings before they are sent to the Service as a QuestObjects
Query.
Persistent Quester Store A dynamic database of Questers
that is maintained on the QuestObjects Server, allowing
Questers to be stored across Client sessions whereby the state
and contents of the Client are automatically restored when a
new Client Session is started.
Quester—An intelligent non-visual object contained by an
Active Component that links a QuestObjects StringList to an
input buffer. Questers exist on both the QuestObjects Client
and the QuestObjects Server and can be specifically referred
to as Client Quester and Server Quester. Questers communi
cate with each other through a QuestObjects Controller.
Questlet A User Interface Element that accesses the
QuestObjects system through one or more Questers. A visual
Active Component.
QuestObjects Adaptor—An optional Software component for
existing application servers and web servers that allows these
servers to use data entered into the QuestObjects system by
users of client systems and web browsers that require an
Application Proxy.

US 8,539,024 B2
11

QuestObjects Client Part of the QuestObjects system that
functions as the client tier consisting of one or more Client
Questers and a Client Controller that communicates to a
QuestObjects Server.
QuestObjects Controller—An intelligent non-visual compo
nent that provides the interface between Questers on QuestO
bjects Clients and QuestObjects Servers. QuestObjects Con
trollers implement the protocol of the present invention.
QuestObjects Query—A string created by the Server Quester
with optional qualifier and the requested row numbers form
ing a query to be executed by a specified QuestObjects Ser
vice.
QuestObjects Result Set A set of StringLists with corre
sponding Query returned from the QuestObjects Service,
returned in batches to the Client Quester by the Server
Quester.
QuestObjects Server Central part of the QuestObjects sys
tem that provides the link between any number of QuestOb
jects Clients, any number of QuestObjects Services, and any
number of other QuestObjects Servers. Maintains Client Ses
sions that QuestObjects Clients communicate with through
the Server Controller. Provides services such as caching, rep
lication and distribution.
QuestObjects Service One of the Content Channels pro
vided by a specific Syndicator. A logical name for a Syndi
cator, a Content Channel and its corresponding Content
Engine.
QuestObjects String Sequence of Unicode characters with
standardized attributes used by the QuestObjects system.
QuestObjects String List—Container for a set of QuestOb
jects Strings retrieved from a QuestObjects Service with stan
dardized attributes needed by the QuestObjects System.
QuestObjects User—Person or process accessing the
QuestObjects system from the QuestObjects Client, option
ally authorized by the Syndicator.
Server Controller—A QuestObjects Controller on a QuestO
bjects Server.
Server Quester—AQuesterona QuestObjects Server that has
a Client Quester as its peer.
Syndicator—A part of the QuestObjects system that offers
one or more Content Channels to be used by QuestObjects
Servers, performing user-based accounting services based on
actual data use such as billing, collection of statistics and
management of preferences.
User Interface Element—A visual and optionally interactive
componentina Software program that provides an interface to
the user.

The present invention provides a system that allows clients
or client applications to asynchronously retrieve database
information from a remote server of server application. The
terms “client and “server” are used herein to reflect a specific
embodiment of the invention although it will be evident to one
skilled in the art that the invention may be equally used with
any implementation that requires communication between a
first process or application and a second process or applica
tion, regardless of whether these processes comprise a typical
client-server setup or not. The invention includes a Server,
that handles requests for information from clients, and a
communication protocol that is optimized for sending single
characters from a Client to the Server, and lists of strings from
the Server to the Client. In one embodiment, as the Server
receives a single character from the Client, it immediately
analyzes the lengthening string of characters and, based on
that analysis, returns database information to the Client in the
form of a list of strings. Clients are not restricted to programs
with a user interface. Generally, any process or mechanism
that can send characters and receive string lists can be con

10

15

25

30

35

40

45

50

55

60

65

12
sidered a client of the system. For example, in an industrial or
power Supply setting, the control system of a power plant
could send sensor readings to the system, and in return receive
lists of actions to be taken, based on those sensor readings.
The system's protocol is not restricted to sending single

characters. In fact, Clients can also use the protocol to send a
string of characters. For example, when a user replaces the
contents of an entry field with a new string, the Client may
then send the entire string all at once to the Server, instead of
character by character.

In accordance with one embodiment of the invention the
system is session-based, in that the server knows or recog
nizes when Subsequent requests originate at the same Client.
Thus, in responding to a character the Server receives from a
Client it can use the history of data that has been sent to and
from the current user. In one embodiment, the system stores
user preferences with each Service, so that they are always
available to the Client, (i.e., they are independent of the physi
cal location of the client). Furthermore, client authentication
and a billing system based on actual data and content use by
Clients are supported. For faster response, the Server may
predict input from the Client based on statistics and/or algo
rithms.
The system is bi-directional and asynchronous, in that both

the Client and the Server can initiate communications at any
moment in time. The functionality of the system is such that
it can run in parallel with the normal operation of clients.
Tasks that clients execute on the system are non-blocking, and
clients may resume normal operation while the system is
performing those tasks. For example, a communication initi
ated by the Client may be a single character that is sent to the
Server, that responds by returning appropriate data. An
example of a communication initiated by the Server is updat
ing the information provided to the client. Because the system
is session-based it can keep track of database information that
has been sent to the Client. As information changes in the
database, the Server sends an updated version of that infor
mation to the Client.
Embodiments of the system may be implemented as a

multi-tier environment This makes it scalable because the
individual tiers can be replicated as many times as necessary,
while load balancing algorithms (including but not limited to
random and round robin load-balancing) can be used to dis
tribute the load over the copies of the tiers. One skilled in the
art would appreciate that it is not necessary to replicate the
tiers. Indeed, there may be only a single copy of each tier, and
that all tiers (Client, Server, and Service) may be running on
a single computer system.

FIG. 1 illustrates the general outline of a system that
embodies the present invention. As shown in FIG.1 there may
be various Clients 101 using the system. These Clients use a
communication protocol 102 to send information, including
but not limited to single characters, and to receive informa
tion, including but not limited to lists of strings and corre
sponding metadata. At least one Server 103 receives informa
tion from the Client, and sends information to the Client. In a
typical embodiment if there is a plurality of Servers, then the
system can be designed so that each Client connects to only
one of them, which then relays connections to other Servers,
possibly using load-balancing algorithms. Servers have a
communication link 104 to a Service 105, which they use to
obtain the information that they send to the Client.

FIG. 2 is a schematic illustrating an embodiment of the
present invention, and displays a five-tier system that has a
user interface in which user interface elements use the present
invention to assist the user in performing its tasks. For pur
poses of illustration, FIG. 2 displays just one session and one

US 8,539,024 B2
13

content Service. In an actual implementation there may be
multiple concurrently active sessions, and there may be more
than one content Service that Clients can use. As shown
herein, the first of the five tiers is a Client tier 201. The Client
tier contains the user interface and the Client components that
are needed to use the system. The second tier is a Server or
server process 206, which handles the queries that Clients
execute, and in return displays results to the Client. Service
213, which corresponds to 105 of FIG. 1, is a logical entity
consisting of three more tiers: a Syndicator 214, a Content
Channel 219 and a Content Engine 224. The Syndicator pro
vides access to a number of Content Channels and performs
accounting services based on actual data use. The Content
Channel provides a specific type of information from a spe
cific source (i.e. the Content Engine). The Content Engine is
the actual source of any content that is made available through
the QuestObjects system. The Client tier 201 corresponds to
the client 101 in FIG.1. In this example, the Client may be an
application (and in Some embodiments a web application)
with a user interface that accesses the system of the present
invention. As used in the context of this disclosure a user
interface element that uses the present invention is referred to
as a “Questlet.” A Client can contain one or more Questlets
202 (e.g. an input field or a drop down list. FIG. 3 described
later contains three examples of such Questlets. A Questlet is
always associated with at least one Client Quester 203.
Questers are objects that tie a QuestObjects input buffer (con
taining input from the Client) to a QuestObjects Result Set
returned from a QuestObjects Server. Questers exist on both
the Client and Server, in which case they are referred to as a
Client Quester and a Server Quester, respectively. Every Cli
ent Quester has one corresponding Server Quester. In accor
dance with the invention, any event or change that happens in
either one of them is automatically duplicated to the other so
that their states are always equal. This synchronization
mechanism is fault-tolerant so that a failure in the communi
cation link does not prevent the Questers from performing
tasks for which they do not need to communicate. For
example, a Client Quester can retrieve results from the cache,
even if there is no communication link to the Server. Each
single Quester accesses exactly one QuestObjects Service,
i.e. one specific Content Channel offered by one specific
Syndicator. At initialization of the Client, the Questlet tells its
Quester which Service to access. In one embodiment a Ser
vice is stored or made available on only one Server within a
network of Servers. However, this is transparent to the Client
because each Server will forward requests to the right com
puter if necessary. The Client does not need to know the exact
location of the Service.

To communicate with its Server Quester 208, each Quester
in a session uses a controller 204. The system contains at least
one Client Controller 204 and a Server Controller 209, which
together implement the network communication protocol 205
of the present invention. Client Controllers may cache results
received from a Server, thus eliminating the need for network
traffic when results are reused.

Client Questers are managed by a Questlet, which create
and destroy Questers they need. In a similar fashion, Server
Questers are managed by a Session 207. When a Client
Quester is created, it registers itself with the Client Controller.
The Client controller forwards this registration information
as a message to the Session using the Server Controller. The
Session then checks if the Persistent Quester Store 210 con
tains a stored Quester belonging to the current user matching
the requested Service and Query Qualifier. If such a Quester
exists, it is restored from the Persistent Quester Store and

10

15

25

30

35

40

45

50

55

60

65

14
used as the peer of the Client Quester. Otherwise, the Session
creates a new Server Quester to be used as the Client
Quester's peer.
A Time Server 211 provides a single source of timing

information within the system. This is necessary, because the
system itself may comprise multiple independent computer
systems that may be set to a different time. Using a single
time source allows, for example, the expiration time of a
ResultSet to be calibrated to the Time Server so that all parts
of the system determine validity of its data using the same
time.

Server communication link 212 is used by the Server to
send requests for information to a Service, and by a Service to
return requested information. Requests for information are
Query objects that are sent to and interpreted by a specific
Service. Query objects contain at least a string used by the
Service as a criterion for information to be retrieved, in addi
tion to a specification of row numbers to be returned to the
Client. For example, two Subsequent queries may request row
numbers 1 through 5, and 6 through 10, respectively. A query
object may also contain a Qualifier that is passed to the
appropriate Service. This optional Qualifier contains
attributes that are needed by the Service to execute the Query.
Qualifier attributes may indicate a desired sort order or in the
example of a thesaurus Service may contain a parameter
indicating that the result list must contain broader terms of the
Query string. Services use the communication link to send
lists of strings (with their attributes and metadata) to Servers.
Server communication link 212 is also used by Server
Questers to store and retrieve user preferences from a Syndi
cator's Preference Manager.

Questers use Services to obtain content. A Service is one of
the Content Channels managed by a Syndicator. When a
Quester is initialized, it is notified by its Active Component of
the Service it must use. The Service may require authentica
tion, which is why the Syndicator provides a User Manager
215. If a Client allows the user to set preferences for the
Service (or preferences needed by the Active Component), it
may store those preferences using the Syndicator's Prefer
ence Manager 216. The Server (i.e. Server Quester) only uses
the Syndicator for authentication and preferences. To obtain
content, it accesses the appropriate Content Channel directly.
The Content Channel uses its Syndicator to store usage data
that can be later used for accounting and billing purposes.
Usage data is stored in a Usage Statistics Store 217.

Content communication link 218 is used by Content Chan
nels to send usage data to their Syndicator, and to retrieve user
information from the Syndicator. The Content Channel is a
layer between the QuestObjects System, and the actual con
tent made available to the system by a Content Engine 224.
Each Content Channel has a corresponding Query Manager
220 that specifies the type of query that can be sent to the
corresponding Content Engine, and defines the types of data
that can be returned by the Content Channel.

Specification of query type comprises a set of Query Pat
terns and Query Filters that are used by the Server Quester to
validate a string before the string is sent to the Content Chan
nel as a QuestObjects Query. For example, a query type
“URL may allow the Server Quester to check for the pres
ence of a complete URL in the input string before the input
string is sent to the Content Channel as a query. A query type
“date’ might check for the entry of a valid date before the
query is forwarded to the Content Channel.
The Query Manager optionally defines the types of string

data that can be returned to the Client by the Content Channel.
Specific Active Components at the Client can use this infor
mation to connect to Services that Support specific types of

US 8,539,024 B2
15

data. Examples of String types include: simple terms, defini
tional terms, relational terms, quotes, simple numbers, com
pound numbers, dates, URLs, e-mail addresses, preformatted
phone numbers, and specified XML formatted data etc.
The Query Manager 220 retrieves database information

through a Content Access Module 221. The Content Access
Module is an abstraction layer between the Query Manager
and a Content Engine. It is the only part of the system that
knows how to access the Content Engine that is linked to the
Content Channel. In this way, Query Managers can use a
standardized API to access any Content Engine. To reduce
information traffic between Content Channels and Content
Engines, Content Channels may access a content-based cache
222 in which information that was previously retrieved from
Content Engines is cached. Engine communication link 223
is used by Content Access Modules to communicate with
Content Engines. The protocol used is the native protocol of
the Content Engine. For example, if the Content Engine is an
SQL based database system then the protocol used may be a
series of SQL commands. The Content Access Module is
responsible for connecting the Content Engine to the QuestO
bjects System.

Content Engines 224 are the primary source of information
in the system. Content Engines can be located on any physical
computer system, may be replicated to allow load balancing,
and may be, for example, a database, algorithm or search
engine from a third-party vendor. An example of Such an
algorithm is Soundex developed by Knuth. Content Engines
may require user authentication, which, if required, is
handled by the Syndicator (through the Content Access Mod
ule).

The invention uses Content Engines as a source of strings.
One skilled in the art would understand that a string may, for
example, contain a URL of, or a reference to any resource,
including images and movies stored on a network or local
drive. Furthermore, strings may have metadata associated
with them. In one embodiment, Strings might have a language
code, creation date, modification date, etc. An entry in a
dictionary may have metadata that relates to its pronuncia
tion, a list of meanings and possible uses, synonyms, refer
ences, etc. A thesaurus term may have a scope note, its nota
tion, its source and its UDC coding as metadata, for example.
Metadata of an encyclopedia entry may include its descrip
tion, references, and links to multi-media objects such as
images and movies. A product database may have a product
code, category, description, price, and currency as metadata.
A stock quote may have metadata Such as a symbol, a com
pany name, the time of the quote, etc. Instructions to a control
system may contain parameters of those instructions as meta
data. For example, the instruction to open a valve can have as
metadata how far it is to be opened.

FIGS. 3A-3C contain three examples of the Questlets that
can be used with the system, i.e., the User Interface Elements
that access the QuestObjects system. In FIG. 3A, a series of
representations of an auto-completing entry field are shown,
Such as might be used in an application window or on a web
form, that accesses a single QuestObjects Service, and allows
for auto-completion of in this example, a U.S. state name.
FIGS. 3B and 3C depict two different presentation forms of
the same complex Questlet that access a number of QuestO
bjects Services simultaneously.

Users should be able to clearly recognize the availability of
QuestObjects Services in an application. As shown in FIG.
3A, and particularly in the auto-complete entry field example
screen element 302, clear symbols are displayed at the right
end of the field. A small disclosure triangle 308 is displayed in
the lower right-hand corner, and serves as an indicator to the

10

15

25

30

35

40

45

50

55

60

65

16
user that a QuestObject is being used. A reserved space herein
referred to as the “status area', and located above the disclo
sure triangle 301 is used to display information about the state
of the QuestObjects system. The successive shots of this
screen element 302 through 307 show some of the different
kinds of states in this status area. Screen element 302 depicts
an empty data field with an empty status area. The screen
element 303 shows the same field immediately after the user
enters a character'N'. On receiving the "N'input, the Quest
let immediately checks its internal entry cache for available
auto-complete responses. If the cache does not contain a valid
string (either because the cache is empty, because the cache is
incomplete for the entry character, or because one or more
cached strings have expired) the QuestObjects system sends a
query to the QuestObjects Service. This sending process is
indicated by a network access symbol in the status area 304
which is in this embodiment takes the form of a left and right
facing arrows.

Screen element 305 shows the entry field after the Server
has sent one or more auto-complete strings back to the Quest
let. This example situation is typical of these instances in
which the user did not enter a second character after the
original “N' before the QuestObjects system responded. The
QuestObjects system is inherently multi-threaded and allows
the user to continue typing during access of the QuestObjects
Service. The screen element status area of 305 now displays
a small downward facing arrow indicating that there are more
available auto-complete answers. In this case, the entry field
has displayed the first one in alphabetic order.

Screen element 306 shows the same entry field after the
user has hit the down arrow key or clicked on the arrow
symbol in the status area. The next available auto-complete
response in alphabetical order is displayed. The double up
and down pointing arrows in the status area now indicate that
both a previous response (in this example, “Nebraska') and a
next response are available.

Screen element 307 shows the same entry field after the
user has typed two additional characters, “e' and “v'. As
shown in this example, the status area changes to a checkmark
indicating that there is now only one available auto-complete
match for the characters entered. The user can at any point use
the backspace key on their keyboard (or perform other actions
defined in the Questlet) to select different states, or can leave
the entry field to confirm his selection. At this time, the system
may do several things. It can automatically accept the string
“Nevada' and allow the user to move on with the rest of the
entry form; or if it has been configured such it may decide to
replace the string “Nevada' by the two-character state code.
The QuestObjects Service not only returns strings, but also
any corresponding metadata. This example of an auto-com
plete entry field Questlet is based on showing the response
string, but other Questlets (and even invisible Active Compo
nents) may performan action invisible to the user. In addition,
a response sent to one Questlet can trigger a response in other
Questlets that have a pre-defined dependency to that Questlet.
For example, entering a city into one Questlet can trigger
another Questlet to display the corresponding state. It will be
evident to one skilled in the art, that although left, right, up
and down arrows are used to indicate usually the status of the
QuestObject field, other mechanisms of showing the status
within the scope and spirit of the invention.

Interdependent data (which in the context of this disclosure
is that data originating from a multitude of QuestObjects
Services) can be combined into a complex Questlet.
Examples 309 shown in FIG. 3B and example 313 shown in
FIG. 3C show a complex user interface element (Questlet)
that makes multiple QuestObjects Services available to the

US 8,539,024 B2
17

user. In both examples the upper part of the Questlet is an
entry field that may offer the auto-complete functionality
described in FIG. 3A. By clicking on the disclosure triangle
308 shown in the earlier FIG. 3A (or by another action), the
user can disclose the rest of the Questlet, which in this
example comprises two functional areas 311 and 312. In this
example, the user interface allows the user to choose a vertical
presentation mode 309, shown in FIG. 3B or a horizontal
presentation mode 313, shown in FIG. 3C for the Questlet. A
close box 310 replaces the disclosure triangle in the entry
field, allowing the user to close areas 311 and 312. In FIG. 3C
Area 314 shows a certain QuestObjects Service, in this case a
list of “Recent Terms' accessed by the user. This Questlet
allows the user to select a different QuestObjects Service for
area 314 by selecting it from a popup list319. In this example,
an appropriate second Service might be “Alphabetic Listing.

In both examples of FIGS. 3B and 3C, area 312 displays a
QuestObjects “Thesaurus Service' (Thesa) that has been
selected. Additionally, in FIG. 3C areas 315 through 318
display four different Questers that take their data from a
QuestObjects Thesaurus Service. These Questers all access
the same Thesaurus and all have a dependency on the selected
string in the main list of area 314. Once the user clicks on a
string in area 314 the thesaurus lists 315 through 318 are
automatically updated to show the corresponding “Used For
terms' UF, “Broader Terms’ BT, “Narrower Terms NT, and
“Related Terms' RT from the Thesaurus Service. Questers
315 through 318 thus have a different Qualifier that is used to
access the same QuestObjects Service. It will be evident to
those skilled in the art that this example is not intended to be
a complete description offeatures that a thesaurus browser (or
any other Service) provides. Most thesauri offer a multitude
of term relationships and qualifiers. A Questlet or part of a
Questlet may provide access to a multitude of QuestObjects
Services. A possible way to do this is to show multiple tabbed
panes accessible through tab buttons named after the Services
they represent 320.

Data from the QuestObjects Services can be displayed by a
Questlet in many forms. Thesaurus browser Questlets gener
ally display interactive lists of related terms. Questlets can
also allow users to lookup data in a reference database (dic
tionary, encyclopedia, product catalog, Yellow Pages, etc.)
made available as a QuestObjects Service. Furthermore,
Questlets can access QuestObjects Services that provide a
standardized interface to search engines. These search
engines may be Internet-based or can be built into existing
database servers. Questlets can also access pre-defined func
tions made available as QuestObjects Services (such as a
bank number check, credit card validation Service or encryp
tion/decryption Service). Questlets can even access transla
tion Services allowing on-the-fly translation of entry data. In
Some embodiments Questlets can retrieve multi-media data
formats by receiving a URL or pointer to multi-media files or
streaming media from a QuestObjects Service. In other
embodiments Questlets can be used to display current stock
quotes, news flashes, advertisements, Internet banners, or
data from any other real-time data push Service. Questlets can
provide an auto-complete or validity checking mechanism on
the data present in specific fields or combinations of fields in
relational database tables.
As described above, Questlets are well suited to represent

QuestObjects data visually. However, a QuestObjects Client
system can also contain non-visual Active Components, such
as function calls from within a procedure in a program to
access a QuestObjects Service. A program that needs to dis
play a static or unchanging list of strings can use a Quester in
its initialization procedure to retrieve that list from a QuestO

18
bjects Server. By calling a Quester, a stored procedure in a
database can make a QuestObjects Service available to any
database application. By encapsulating a Quester into an
object Supplied with a programming language, a QuestOb

5 jects Service can be made available to its developers. Another

10

15

25

30

35

40

45

50

55

60

65

example of how QuestObjects Services may be accessed is
through a popup menu that a user can access by clicking on a
word, phrase or sentence in a document. The popup menu can
include one or more QuestObjects Services by calling one or
more Questers. In an application that is controlled by speech,
a Sound conversion engine that translates speech input into
phonemes can be used to send these phonemes to a QuestO
bjects speech recognition Service through a Quester. As yet
another example, a control system can use a Quester to send
sensor readings to a Server, which then queries a special
purpose content engine to return actions that the control sys
tem must perform given the sensor readings.

FIG. 4 shows a simplified event life cycle illustrating what
happens in a QuestObjects system using an auto-complete
Service. The protocol of the present invention is implemented
in the Client Controller and the Server Controller 400. In an
initial phase an Active Component on the Client tells its
Quester to start or initialize 401 a corresponding Client Ses
sion on the current QuestObjects Server by sending a Register
message to its Client Controller. The Server Controller starts
a Client Session if it has not been started already. For sim
plicity the event trace of FIG. 4 does not show typical error
handling that normally occurs, for instance when a Session
cannot be started. If the Quester was used before in the same
Active Component and application, the Session may restore
the Quester from a Persistent Quester Store, which may even
cause a Query to be triggered immediately if the ResultSet in
the Quester is out of date.
The Server Quester looks up the Service in the Server's list

of known QuestObjects Services, which may or may not be
located on the same computer. Once the Service is found, the
Client is registered and optionally authenticated by the Ser
vice. At this time, the Service 402 returns information to the
Server Controller at which time the Client receives a confir
mation that it was registered successfully. The Active Com
ponent can now start using the Quester it has just initialized.
If the Active Component has a user interface (i.e. it is a
Questlet) then it will now allow the user to start entering
characters or cause other user events.
The next step in the process is to capture user input. As

shown in FIG.4, at point 403 a character event is generated to
indicate the user has typed a character 'a' into the Questlet.
The Quester sends a message to its Client Controller telling it
that character a must be appended to the input buffer (it will
be evident to one skilled in theart that if the cursor is not at the
end of the input string, typing a would, for example, gener
ate a different event to insert the character instead of append
it). The Client Controller uses the protocol to synchronize the
input buffer in the Server Quester by communicating to the
Server Controller. The Server Controller may look up query
'a' in its Result Set cache, in which case it can return a
previous Result Set to the Client without accessing the Ser
vice. Also, depending on any rules specified by the Service (as
specified by a list of Query Patterns and Query Filters defined
in the Query Manager of the Content Channel) and depending
on the time interval between input buffer changes, the Server
Quester may decide not to immediately send the (perhaps
incomplete) string to the Service, as shown here.
An additional character event 404 is generated when the

user has typed a second character b into the Questlet. As
before, a corresponding event arrives at the Server Quester. In
this case, the Server Quester may deduct that the input string

US 8,539,024 B2
19

represents a valid query and send the appropriate query mes
sage 'ab to the Service. After receiving a query, the Service
executes it by accessing its Content Engine through the Con
tent Access Module unless the Query Manager was able to
lookup the same Query with a ResultSet in the Content-based
Cache. After an appropriate Result Set 405 is retrieved, the
Service will return it to the Client. In some embodiments, a
large Result Set may be returned to the Client in small
batches. In other embodiments an incomplete ResultSet may
also be returned if the Content Engine takes a long time to
come up with a batch of results. A QuestObjects Service may
automatically push updated information matching the pre
vious query to the Client as it becomes available. A Query can
also be set to auto-repeat itself 406 if necessary or desired.

At step 407 the user types a third character ‘c’ into the
Questlet. While this character is being sent to the Server, a
second and possibly third result set from the previous query is
on its way to the Client. When the Client Controller decides
408 that the received Result Set ab no longer matches the
current input String abc., the second update of 'ab' is not
transmitted to the Active Component. Depending on the sort
order and sort attributes of the ResultSet, the Client Control
ler may still send the second and third Result Sets to the
Active Component if the second query abc matches the first
string of the ResultSet for the first query 'ab' 409. In that case,
the user typed a character that matched the third character in
the second or third ResultSet, thus validating the ResultSets
for the second query. Eventually the Server Quester receives
notice of the third character appended to the input buffer, and
sends a new query abc to the Service. The Server Quester
will stop the repeating of query aband the Service will now
execute 410 the new query abc at the Content Engine, or
retrieve it from the Content-based Cache.

FIG. 5 depicts a flow chart illustrating the interface
between an Active Component and the present invention. As
shown therein a Client Quester is initialized (step 501) in
which each active component is associated with one or more
Client Questers. A loop is then entered that exits when the
Active Component is destroyed (step 502). In the loop, events
are sent to the Client Quester (step 503), such as keyboard
events, click events and focus events (i.e. events that tell the
system which user interface element currently has input
focus). When events are sent to the Client Quester, they may
result in return events from the Client Quester, such as events
informing that the Result Set of the Client Quester has
changed. Those events are received by the event receiver (step
504). The event receiver waits for events from the Client
Quester (step 506) and if events have been received (507)
—processes them (step 508). It will be evident to one skilled
in the art that the Active Component can be multi-threaded, in
that the event receiver can work concurrently with the rest of
the Active Component. The Active Component may also use
a cooperative multi-threading scheme where it actively
handles client events and server responses in a continuous
loop.

FIG. 6 shows a flow chart illustrating the Client side of the
present invention. First, the Client Quester registers itself
with the Client Controller (step 601). It then enters a loop that
exits when the Client Quester is destroyed (step 602). When
that happens, the Client Quester deregisters itself from the
Client Controller (step 603). During the loop the Client
Quester handles events from the Active Component it belongs
to. First, it waits for an event and receives it (step 604). Then
the type of the event is checked (step 605). If it is not a
character event, it is handled depending on the type and
content of the event (step 606). An example of a non-character
event is a double-click on the input string, the click of abutton

10

15

25

30

35

40

45

50

55

60

65

20
that clears the input buffer, the addition of characters to the
input buffer by a paste-action etc. If the event is a character
event, the input buffer is updated accordingly and Client
Questers that have dependencies with the input buffer or the
Result Set also are notified (step 607).
The next step is to get results based on the new input buffer.

First, the Client Quester checks if the results are present in the
client-side cache, which usually is a fast short-term
in-memory buffer (step 608); if so, they are retrieved from the
cache (step 609) and the Active Component is notified of the
results (step 610). If the results are not found in the cache, the
Client Quester uses the Client Controller to send the new
input buffer to the Server Quester, so that a new query can be
executed (step 611). To support this, the protocol of the
present invention provides a number of messages that allow
the Client Quester to sendjust the changes to the input buffer,
instead of sending the entire input buffer. These messages
include but are not limited to: inputBufferAppend, input
BufferDeleteCharAt, inputBufferinsertCharAt, inputBuffer
SetCharat, inputBufferSetLength, and inputBufferDelete.
After thus updating the Server Quester's input buffer, the
Client Quester activates the result retriever to wait for new
results and process them (step 612).
The Client Quester is intended to be multi-threaded, so that

it can continue providing its services to its Active Component
while it waits for results from the QuestObjects Server. There
fore, the Result Retriever can be implemented to run in a
separate thread of execution. In this embodiment the Result
Retriever waits for results from the Server Quester (step 613).
If results have been received (step 614), it checks whether
they are usable (step 615). Results are usable if they corre
spond to the latest query. If results are from a previous query
(which can occur because the system is multi-threaded and
multi-tier), they may also still be usable if the Client Quester
can filter them to match the new input buffer (this depends on
the sort flags in the ResultSet). Ifresults are usable, the Active
Component is notified of the new results. This notification is
also sent to other Client Questers that have dependencies on
the originating Client Quester (step 616). Received results are
stored in the client-side cache, regardless of whether they
were found to be usable (step 617).

FIG. 7 is a flow chart illustrating the Server side of the
present invention. The first thing a Server Quester does when
it is created, is to check whether its attributes can be restored
from the Persistent Quester Store (step 701), based on the
parameters with which it is created. If the attributes can be
restored, they are restored and registered with its correspond
ing Service (step 702). In accordance with one embodiment,
one of the restored attributes is a Result Set attribute; the
Server Quester checks whether it is still up to date (step 703).
If not, a query is sent to the corresponding Service if it is a
pushing service or if the Query was originally set to be auto
repeating (step 704) and (in a separate thread of execution)
the Server Quester waits for the results of that query and
processes them (step 705).

If the Server Quester's attributes could not be restored, it
initializes itself and registers itself with the correct service
which is one of the initialization parameters (step 706). If the
Client Quester was created with a default input buffer, the
Server Quester may automatically send the corresponding
Query to the Service. At this point, the initialization process is
complete and the Server Quester enters a loop that exits when
the Quester is destroyed (step 707). During the loop, the
Server Quester checks whether the Query String is valid,
using the validation attributes of the Service (Query Pattern
and Query Filter) (step 708). If the query is valid, the Server
Quester checks if the server-side cache has the results for the

US 8,539,024 B2
21

Query String (step 709). If not, a new Query is sent to the
Service (step 710). After that, the results are retrieved (either
from cache or from the Service) and processed (step 711).

After validating (and possibly processing) the Query
String, the Server Quester waits for messages from the Client
Quester notifying of changes to the input buffer (step 712). If
Such a message is received, the input buffer is updated accord
ingly (step 713), and the loop is re-entered (step 708).
The processing of query results is performed in a separate

thread of execution. The process performed in this thread
starts by obtaining the Result Set (step 714), either from the
server-side cache or from the Service depending on the result
of the decision in step 709. When these results are obtained
(step 715), they are sent to the Client Quester (step 716) either
as part of the ResultSet or as the entire ResultSet, depending
on parameters set by the Client Quester and are stored in the
server-side cache (step 717). In addition, the Service is noti
fied of actual results that have been sent to the client (step
718). If the results were pushed by the Service (step 719), this
thread starts waiting for new results to be processed; other
wise, the thread stops.

FIGS. 8A-8D illustrate and object model of an embodi
ment of the present invention. FIG. 8A illustrates the base
portion of the model containing the entities that are not spe
cific to either QuestObjects Clients, QuestObjects Servers, or
QuestObjects Services. FIG. 8B displays the entities that are
specific to the QuestObjects client. FIG. 8C contains the
entities specific to the QuestObjects Server. FIG. 8D shows
the entities specific to the QuestObjects Service.

Each of FIGS. 8A through 8D show object models of one
particular embodiment of the present invention, using UML
(Unified Modelling Language) notation. Note that in the fig
ures some of the entities have a name that starts with one of
the words base, client, server, and service, followed by
two colons. Those entities are merely references to entities in
the subfigure indicated by the word before the two colons. For
example, the entity named service:QoService in FIG. 8A is
a reference to the QoService entity in the figure of the
service part, namely FIG. 8D. It will be evident to one skilled
in the art that the model shown is purely an illustrative
example of one embodiment of the invention and that other
models and implementations may be developed to practice
the invention while remaining within the spirit and scope of
the this disclosure.

The base part of the system—depicted in FIG. 8A-com
prises entities that are not specific to one of the tiers of the
QuestObjects system. One of the most important entities
shown in FIG. 8A is QoString, the QuestObjects String. QoS
tring models the strings that the QuestObjects System
handles. A QoString has at least a value, which is the
sequence of (Unicode) characters itself. To guarantee a mini
mum performance level, i.e. one in which the communication
takes as little time as possible, this value has a limited length
(e.g. of 256 characters). Furthermore, a QoString may have a
key and metadata. The key (if any is present) is the identifier
(i.e. the primary key) of the QuestObjects String in the data
base from which it originates. This key can be used to retrieve
data from the database that is related to the QuestObjects
String. Metadata of a QoString can be any additional data that
is provided with the QoString's value. Metadata of a QoString
is XML formatted and has a limited length (e.g. 2048 bytes),
in order to ensure that QoStrings can be exchanged between
the tiers of the QuestObjects System without compromising
efficiency. If the QoString originates from a Content Channel,
it may also have a fetchTime, namely the timestamp of when
the QoString was retrieved from the underlying content pro
vider. It also may have an expirationTime indicating how long

5

10

15

25

30

35

40

45

50

55

22
the data in the QoString is to be considered valid. Optionally
a QoString can have a type, which is a reference to a QoType
object. (Note that for maximum efficiency the types are not
actually stored in the QoStrings, because it is very likely that
many QoStrings in a QoResultSet have the same type. Storing
the types in the strings would unnecessarily increase network
traffic.)
The QoType object models the concept of a strings type. It

has a string typestring that contains the description of the type
and an indicator type.Indicator that defines the meaning of the
description (typestring). Examples of string types are: the
DTD or Schema of the string's value in these cases in which
it is XML formatted (or, alternatively, the URL of the DTD or
Schema), the number formatter in the case it is a number, and
the date (and/or time) formatter in the case it is a date (and/or
time). Table 1 shows an example of the use of types, espe
cially type indicators.

TABLE 1

Value of
typendicator Meaning of typestring

O typestring contains the name of the type
64 typestring contains a string formatter
65 typestring contains a number formatter
66 typestring contains a date formatter
128 typestring contains a DTD
129 typestring contains a Schema
160 typestring contains the URL of a DTD
161 typestring contains the URL of a Schema
255 custom type; typestring is the type's name

In the example shown in Table 1, bit 7 of the typeIndicator
is on if typestring is XML related, bit 6 is on if typestring is
some formatter, and bit 5 is on when typestring is a URL. This
name must follow the same naming scheme as Java packages:
They must use the Internet domain name of the one who
defined the type, with its elements reversed. For example,
custom types defined by MasterObjects would begin with
“com.masterobjects.”.
The QoCuery entity models the specification of a QuestO

bjects Query. It includes a query String that contains the value
the Content Channel is queried for (which is named que
ryString in the figure). In addition to the queryString,
QoQuery has a property qualifier that can hold any other
attributes of the query. The format and meaning of the quali
fier's contents is defined by the Content Channel that executes
the query. Furthermore, it can be specified which row num
bers of the total result set must be returned using the property
rownums. The property requestedTypes can optionally
hold a list of QoTypes, limiting the types of the strings that
will result from the query. The timeout property can be used
to specify a maximum amount of time execution of the query
may take.

Queries may include a type (QoCuery type). Query types
are similar to QoType (i.e. String Types), and can be used by
QuestObjects Clients to find all QuestObjects Services that
Support a certain kind of Query.
The result of a query is represented by the QoResultSet

entity. QuestObjects Result Sets are collections of QuestOb
60 jects Strings that are sent from a QuestObjects Server to a

65

QuestObjects Client in response to a query. QoResultSets are
created and filled by a QuestObjects Service (to which QoRe
sultSet has a reference named service), based on the
QoQuery to which the QoResultSet has a reference. Actual
results are stored as an array of QoStrings in the strings
property. Elements of the QuestObjects Result Set (i.e. QoS
trings) may be selected, as indicated by the selected prop

US 8,539,024 B2
23

erty that is a list of indices in the strings array of selected
strings. Also, one of the QoStrings may be marked as current
as indicated by the current property. (When a QoString is
marked as current it means that all operations are performed
on that QoString, unless another one is explicitly specified.)
QuestObjects Result Sets include an attribute ordered that
indicates whether the QoStrings in the QoResultSet are
ordered. Sometimes, especially when a QuestObjects Result
Set is narrowed down by a new Query, the fact that the
QoResultSet is ordered may mean that the QuestObjects Cli
ent does not need to actually execute a new Query; instead, it
can filter the previous QuestObjects Result Set itself accord
ing to the new query String.
As further described below, Server Questers may have a

QuestObjects Result Set, of which only a part is sent to the
QuestObjects Client. At all times, the row nums property of
QoResultSet indicates the row numbers of QoStrings that are
actually present in the QoResultSet. The row nums property
may have different values for corresponding QoResultSets on
the QuestObjects Server and the QuestObjects Client. The
same holds for the strings property. The complete property
is the percentage of the QoStrings in the server-side QoRe
sultSet that is present in the corresponding client-side QoRe
sultSet as well. The property totalNumberOfStrings indi
cates the total number of QoStrings in the QoResultSet,
whether actually present or not. For server-side QoResultSets
this number is always equal to the length of the strings array,
but for client-side QoResultSets the number may be smaller.

Finally, result sets include an identifier resultSetId. Every
time a Client Quester uses the protocol of the present inven
tion to send something to the Server Quester that may result in
a new QuestObjects ResultSet, it includes a request identifier.
This identifier is then copied in the resultSetId when the
QuestObjects Result Set is sent to the Client Quester. In this
way Client Questers know which request the QuestObjects
Result Set belongs to. (This is important because the system
is asynchronous and on occasions it may occur that a newer
QuestObjects Result Set is sent to the client before an older
one. The request identifier and QuestObjects ResultSet iden
tifier allow the Client Quester to detect and handle this.)

The core entity in the figure is QoCuester. QoGuester is the
superclass of both QoClientOuester (part of the client and
thus depicted in FIG. 8B) and QoServerQuester (depicted in
FIG. 8C). The QoGuester entity models the Quester concept.
Its primary task is to maintain an input buffer, to make Sure
that QuestObjects Queries are executed and to store and pro
vide access to the QuestObjects Result Sets returned by
QuestObjects Services in reply to QuestObjects Queries. At
all times, a QoQuester holds one QoResultSet that contains
the results of the latest QuestObjects Query. (Note that a
QoQuester may hold other QoResultsSets as well, for
example for optimization purposes.) Client Questers and
Server Questers exist in a one-to-one relationship with each
other: for every Client Quester there is exactly one corre
sponding Server Quester, and vice versa. All properties listed
in QoGuester are present and equal, both in the Client Quester
and in the corresponding ServerQuester. An important excep
tion is the resultSet property. In the Server Quester, this is
always the entire QuestObjects ResultSet of the latest Query.
However, in order to minimize network traffic the Server
Quester is intelligent about the portion it actually sends to the
Client Quester. Questers include a property minimum Batch
Time’ that indicates the minimum amount of time that should
pass before the Server Quester sends results to the Client
Quester. This allows the Server Quester to accumulate results
and send them as a single action instead of as a separate action

5

10

15

25

30

35

40

45

24
for each result. There are two situations in which the Server
Quester may ignore this minimum batch time:

(a) when the result set is complete before the minimum
batch time has passed, and

(b) when the number of accumulated results exceeds the
number indicated by the resultSetBatch.Size' property before
the minimum batch time has passed.

If, for whatever reason, the Server Quester postpones send
ing the accumulated results to the Client Quester, the (op
tional) maximumBatchTime’ property indicates how long it
may postpone the sending. Even if no results are available yet,
when the maximum BatchTime passes, the Server Quester
must notify the Client Quester thereof.

Results are sent to the Client Quester in batches, the size of
which is indicated by the resultSetBatch.Size property.
Occasionally, the Server Quester may deviate from this batch
size, notably when the number of results that is not present on
the client is smaller than the batch size or when the maxi
mumBatchTime has passed. This concept can be taken even
further, for example when the batch size is 10 results and the
Server Quester has 11 results, the Server Quester may send
them all, even though it exceeds the batch size, because send
ing one extra result with the other 10 is probably more effi
cient than sending a single result in a separate batch at a later
point. The Server Quester can use the clientMaximumLa
tency to make Such decisions; it indicates the maximum
expected amount of time that elapses between sending a
message and receiving its response. The higher this value, the
more likely it is that sending the eleventh result with the other
ten is more efficient.

Questers include an input buffer. The content of the input
buffer is what the QuestObjects Service will be queried for. In
the Client Quester, the input buffer is controlled by the appli
cation that uses the QuestObjects system. For example, an
application with a graphical user interface may update the
input buffer according to key presses in one of its input fields.
The Client Quester keeps the input buffer of its corresponding
Server Quester up to date using the protocol of the present
invention.

Properties highestReceivedResultSetId and latestRe
questIdare used to detect when QuestObjects ResultSets are
received out of order. As with the resultSetId property of the
QoResultSet, every QuestObjects Result Set includes an
identifier. The highestReceivedResultSetId property stores
the highest of all received QuestObjects ResultSet identifiers.
If a Client Quester only needs the latest results, it can simply
discard received QuestObjects Result Sets that have a lower
identifier than highestReceivedResultSetId. The latestRe
questId is the identifier of the latest request. The QuestOb

50 jects ResultSet with an identifier that matches latestReques

55

60

65

tId holds the results of the latest request.
The remaining properties of QoGuester store the QuestO

bjects Service the Quester uses (service), the optional quali
fier that Queries to this QuestObjects Service need (quali
fier), the types the Quester can handle (types), whether an
application proxy is needed, and the optional function of the
Quester in the application (applicationFunction, used by the
application proxy mechanism to determine how the value of
the Quester is to be passed to the application/web server). In
addition, if the update interval property autoUpdate.Interval
is set to a non-zero value, the Server Quester will automati
cally repeat the last Query with that interval. This is useful for
QuestObjects Services that are not capable of pushing results
themselves. A mechanism is required to allow any other entity
to be notified of changes in the Quester. There are many ways
this can be done. As an example in the embodiment shown in
FIGS. 8A-8D an event mechanism is included that involves

US 8,539,024 B2
25

event listeners and event handlers, very similar to the Java2
event mechanism. An entity that wants to be notified of
changes must implement the QoCuesterChangelListener
interface and then be added to the Quester's changelisten
ers property (using the method addOuesterChangelis
tener). When the Quester changes, it will call the quester
Changed method of all registered
QoQuesterChangelisteners with a QoQuesterChangeEvent
as a parameter. The QoCuesterChangeEvent holds a descrip
tion of the changes of the Quester; it has a reference to the
Quester that raised the event and an event type. In FIG. 8 three
event types are displayed (INPUT BUFFERCHANGED
indicates that the Quester's input buffer has changed,
RESULT SET CURRENT CHANGED indicates that the
current item of the Quester's Result Set has changed, and
RESULT SET SELECTED CHANGED indicates that the
list of selected results in the Quester's Result Set has
changed). More event types can be added as desired.

Another important entity in FIG. 8A is QoController.
QoController is the entity that implements the protocol of the
present invention. In addition, it knows how to buffer usage
statistics and also handles the caching of result sets. QoCon
troller includes two subclasses (QoClientController and QoS
erverController), depicted in FIG. 8b and FIG. 8c, respec
tively. Buffering of usage statistics is an optimization that
eliminates the need of exchanging usage data between the
layers of the system every time a result is used. Instead, the
QuestObjects Controller buffers that data and flushes the
buffer when the statisticsBufferFlushTime has passed. Cach
ing is an optimization as well. Caching is done by the QoRe
sultsCache entry, to which the QuestObjects Controller has a
reference. The QoResultsCache has a list of cached entries
(resultsCacheEntries). The entry of the cache is modeled as
QoResultsCacheEntry, an entity that has a list of QuestOb
jects ResultSets for combinations of query strings and quali
fiers (as defined in QoCuery).
The last entity in FIG. 8A is QoGuery Validator. QoCuery

Validator is an abstract class that defines the method is
Valid. This method has a query string as a parameter and
returns either true’ or false. QuestObjects Services may
declare and publish a QoCuery Validator. By doing so, they
allow the QuestObjects Server to verify the validity of a query
string without actually having to send it to the QuestObjects
Service, thus eliminating network traffic for invalid query
Strings.
FIG.8B displays the minimal entities every QuestObjects

Client must have. Every client of the QuestObjects System at
least has a Client Controller QoClientController. QoClient
Controller is a subclass of QoController that implements the
client side of the protocol of the invention. Applications using
the QuestObjects System do so through Client Questers,
modeled as QoClientOuester. QoClientOuester is the sub
class of QoCuester that implements client-specific Quester
functionality. The figure contains the entity ActiveCompo
nent. It represents some entity that uses the QuestObjects
System through one or more Client Questers.

FIG. 8C shows the server part of the embodiment of the
present invention, and includes the QoServerQontroller, one
of the subclasses of QoController. QoServerController
implements the server-side part of the protocol of the present
invention. In addition, it maintains a list of Sessions running
on the server, and it has references to a Persistent Quester
Store, an optional Service Directory and a list of optional
Application Host Synchronizers. For security reasons, one
implementation of the QuestObjects System may require that
only certified clients can connect to the system. A boolean
requiresCertification indicates this.

10

15

25

30

35

40

45

50

55

60

65

26
The QuestObjects System is session-based. This means

that clients that use the system are assigned to a session,
modeled by the QoSession entity. Every session has a unique
identifier, the sessionId. The QoSession entity maintains a
list of Server Questers that are active in the session (stored in
the serverQuesters property). Furthermore, it has a refer
ence to the Server Controller through which a QuestObjects
Client is using the session.

QoServerQuester is the server-side subclass of QoCuester.
It includes a reference to the session it is being used in (the
session property). Furthermore, when the QuestObjects
Service that the Quester uses has a Query Validator, QoServ
erQuester has (a reference to) a copy of that Query Validator,
so that query strings can be validated before they are actually
sent to the QuestObjects Service. The QoPersistentQuester
Store is an entity that is able to store a user's session and to
restore it at some other time, even when the session would
normally have expired or even when the same user is con
necting from a different client machine. To this end, QoServ
erQuester has two methods store' and restore. The first,
store, returns a QoStoredOuester, which is a (persistent)
placeholder of the Server Quester that contains all relevant
data of that Server Quester. The second, restore, needs a
QoStoredOuester as an argument. The two are each other's
inverse, which means calling store on a QoServerQuester
and then calling restore on the result creates a new QoServ
erQuester that is an exact copy of the original QoServer
Quester.

QoServiceDirectory acts as a Yellow Pages or directory of
QuestObjects Services. For each QuestObjects Service it
stores the name and address, as well as the address of the
QuestObjects Server through which the Service can be
accessed. Furthermore, Services profiles are additionally
stored to allow clients to find all QuestObjects Services sat
isfying desired criteria.

Finally, Qo AppHostSynchronizer is the AppHost Syn
chronizer. QoAppHostSynchronizer has its address as a prop
erty (appHostAddress).

FIG. 8D depicts the service part of the embodiment of the
present invention. Content is disclosed through Content
Channels (the QoContentChannel entity). Content Channels
use Content Access Modules (QoContentAccessModule) to
obtain their data in a standardized way, so only the Content
Access Module knows how to communicate with the under
lying data source. Content Channels are organized in Syndi
cators (the QoSyndicator entity), and each syndicator
includes a list of Content Channels. Each Quester in the
QuestObjects System uses a specific Content Channel of a
specific Syndicator. This is called a QuestObjects Service,
namely one of the Content Channels of a Syndicator. The
property subscriptionRequired indicates whether the user
needs to be a registered user to be allowed to use the Service.
If it is false, only users listed in users may use the Service.
Users can be subscribed to QuestObjects Services, which is
modeled by the QoSubscription entity. Statistics are kept per
Content Channel using the QolusageStatisticsStore entity.
Content Engines optionally have a Query Validator that the
QuestObjects Server may use to validate Query Strings
before sending them off to the QuestObjects Service. In addi
tion, Content Channels have a profile that consists of a Con
tent Channel's description, a list of types (QoType) of
QuestObjects Strings the Content Channel can provide, an
optional list of DTDs of that metadata of QuestObjects
Strings from the Channel conforms to, and an optional list of
QueryTypes the Content Channel accepts.

US 8,539,024 B2
27

QuestObjects Servers communicate with QuestObjects
Services through the QoServiceSession. The QoServiceSes
sion has a static reference to the QuestObjects Service it
belongs to, as well as a static array of IP addresses of QuestO
bjects Servers that are allowed to connect to the QuestObjects
Service. In some versions of the QoServiceSession the array
of IP addresses can be replaced by a list of addresses and
netmasks, or by IP address ranges. Every instance of QoSer
viceSession has the IP address of the server that is using the
session (serverAddress), a connectionTimeout indicating
the maximum period of idle time before the Service Session
is automatically ended, and a serviceSessionId that can be
used to refer to the Service Session.
As described above, a QuestObjects Service is one of the

Content Channels of a Syndicator, so QoService has a refer
ence to both (syndicator and contentChannel). The prop
erty listable indicates whether the Service may be listed in a
Service Directory (server:QoServiceDirectory). If not, the
Service can only be used if the application writer (i.e. the
programmer using the QuestObjects to develop an applica
tion) knows that it exists and where it is available. The prop
erty name is the Service's name, used in the Service Direc
tory amongst others. This name must use the same naming
scheme as the names of custom types. The boolean subscrip
tionRequired indicates whether users must be subscribed
(modeled by QoSubscription) to the Service in order to be
allowed to use it. If the Content Engine of this Service's
Content Channel requires login, contentEngineLoginName
and contentEngineLoginPassword are the name and pass
word with which is logged in. Finally, pricingInfo contains
information about the costs involved in using the Service. It is
formatted as XML, conforming to a well-defined structure
(i.e. DTD or Schema).
A Content Channel has a name (the name property) and a

profile (QOContentChannelProfile). The profile provides
information about the Content Channel, namely about the
Query Types it accepts (queryTypes), the types of the
Strings it can provide (types), and the DTDs that QuestO
bjects Strings metadata conforms to. In addition, it has a
textual description of the content the Content Channel dis
closes.

Content Channels also have properties that define the cri
teria Query Strings have to satisfy. The property que
ryStringMinLength defined the minimum length a valid
query has. Alternatively or additionally, query StringRegu
larExpressions may contain a list of regular expression
describing valid Query Strings (meaning that Query Strings
have to match at least one of the regular expressions). The
property query StringFilters may hold a list of regular
expressions and replacement strings that can transform Query
Strings in a well-defined manner (for example the way the
standard Unix utility 'sed does it). Instead of using these
three properties, Content Channels may define a QoCuery
Validator (described above in FIG. 8A). If there is a Query
Validator, queryStringMinLength, query StringRegularEx
pressions, and queryStringFilters are ignored.
As described above, Syndicators may have a list of users.

Users (QoUser) have a name and a password, as well as a list
of subscriptions (QoSubscription). QoSubscription models a
user's subscription to a Service (the service property). The
properties startDate and expiration Date define the time
frame during which the subscription is valid. Outside that
time frame the user will be denied access through the sub
Scription. The maximum number of queries the user may run
in the Service is stored in the queryLimit attribute. The
queryLimitReset defines when the query counter is reset.
For example, if queryLimit is 10 and queryLimitReset is 7

10

15

25

30

35

40

45

50

55

28
days, the user may run 10 queries per week. (If queryLimit
equals Zero the number of queries is unlimited and que
ryLimitReset is ignored.) The property resultLimit stores
the maximum number of results the user may receive from the
subscription. Similar to queryLimitReset, resultLimitRe
set defines how often the result counter is reset. If
resultLimit equals Zero the number of results is unlimited
and resultLimitReset is ignored. The property pushAl
lowed indicates whether the user may use the Service in
pushing mode. If so, push IntervalLimit indicates the mini
mum amount of time that has to pass between two pushes. A
history Allowed variable indicates whether a history is kept
of the use of the subscription; if so, historyLimit indicates
the maximum size of the history. If the maximum size is
exceeded, the oldest history data is deleted so that the size of
the history is below the maximum size again. If histo
ryLimit equals Zero, the size of the history is unlimited.
Finally, a usage.Anonymous variable indicates that the
QoUsageRecords that are generated for this subscription
must not contain user information (this is necessary because
of privacy issues).

If keepServiceStatistics is true, then the Qol JsageStatis
ticsStore can store three kinds of statistics:

statistics about Strings that have been displayed on the
client; the keepClientDisplayedStatistics indicates whether
this kind of statistics are kept.

statistics about Strings that have actually been selected on
the client; the keepClientSelected Statistics indicates
whether this kind of statistics are kept.

statistics about Strings that have a used on the client; the
keepClientUsedStatistics indicates whether this kind of sta

tistics are kept.
The Client Quester determines the exact meaning of the

three kinds of statistics. In the case of web applications, a
string is generally considered displayed when the Client
Quester accesses it in its QuestObjects Result Set. It is con
sidered selected when a new Query is executed with the String
as Query String. It is considered used when the form on which
the Client Quester is active is submitted with that String. The
actual data is stored as a list of QoUsageRecords in the prop
ery records.
A QoUsageRecord holds usage information about a

QuestObjects String or a number of QuestObjects Strings. If,
in one Service Session, a Quester gets the same Result Set
more than once (consecutively), the usage data of each of the
Strings in the Result Set is grouped in one QoUsageRecord.
However, if stringKey, string Value, rowInResultSet, or
totalRowsInResultSet changes, a new QoUsageRecord
must be used from that point on. The properties of
QoUsageRecord mean the following:

stringKey: if available, this is the unique key of the
QuestObjects String as provided by the Content AccessMod
ule.

stringValue: the value of the QuestObjects String.
rowInResultSet: the row of the QuestObjects String in its

QuestObjects Result Set.
totalRowsInResultSet: the number of rows the QuestOb

60 jects String's Result Set had.

65

dateReturnFirst: the timestamp of the first time the
QuestObjects String was returned by the Content Channel.

dateReturn ast: if the QolusageRecord represents a group
of usage events, this is the timestamp of the last event.

clientDisplayed: indicates whether the QuestObjects Cli
ent that received the QuestObjects String considers it to be
displayed.

US 8,539,024 B2
29

clientSelected: indicates whether the QuestObjects Client
that received the QuestObjects String considers it to be
selected.

clientUsed: indicates whether the QuestObjects Client that
received the QuestObjects String considers it to be used.

applicationName: the name of the application to which the
Quester that received the QuestObjects String belongs.

appliationFunction: the function (if available) of the
Quester that received the QuestObjects String.

activeComponentId: the identifier of the Active Compo
nent that received the QuestObjects String.

user: the identifier of the user that sawfselected/used the
String. If the user's subscription has false as value of usag
eAnonymous, then this property is empty.

Queries are executed by QoOueryExecutors. A Query
Executor has a reference to the Service Session in which the
Query is executed, it has a reference to the Query itself, and it
also has a reference to the Server Quester that has the Query
executed. This reference may be a remote object when Corba
is being used, for example. If some proprietary protocol is
used, it may just be the unique identifier of the Server Quester.

FIG. 9 shows a method for using the present invention in
systems that have limited technical capabilities on the Client
side, such as, for example, web browsers with embedded Java
applets. If developers of client systems have not integrated
Client components of the present invention into their client
software, then Client components needed for the present
invention must be present as Plug-Ins. DLL's, or an equiva
lent device, or they must be downloaded to the client com
puter as applets. These applets can be written in the Java
language, when they are needed. For security reasons, such
Client systems including web browsers usually do not allow
foreign Software (i.e. Software that is not an integral part of
the web browser) to influence or change data entered by the
user before it is sent to the application server (in this case the
web server). Without an additional infrastructure on the
server side, the present invention could not easily be used to
enter data by users of systems with such limited technical
capabilities on the client, because data entered and selected
using the present invention would not becommunicated to the
existing application/web server. However, the modified
invention and method described in FIG. 9, referred to as an
Application Proxy, offers a solution.

Although the system depicted in FIG. 9 can be used to
Support clients in practically any server-based application
server, and particularly in the case of a web server hosting an
application used by end users to enter data that is partially
retrieved using the present invention, the system is not limited
to the web. The system provides an ideal solution for current
web-based applications that consist of web browsers 903 on
the client side and web host computers 901 with web server
Software 917 on the server side. To allow the web server 917
to access data selected using the present invention, this sys
tem provides a link between the web server and the QuestO
bjects Server 902. In this case, QuestObjects Server acts as a
data-entry proxy between the existing client system (web
browser) and the existing web server. Data entered by the
client is submitted to the QuestObjects Adaptor instead of to
the web server. The QuestObjects Adaptor then fills in the
values of the Questers and passes the data to the web server.
An Application Proxy is not required if the QuestObjects
Client components can directly insert data into the client
entry form on the web browser, as is the case on certain
platforms that allow integration between Java applets or other
components and JavaScript in the web browser.

In FIG. 9, the web server runs on a host computer 901
typically associated with a fixed IP address or an Internet host

10

15

25

30

35

40

45

50

55

60

65

30
name. The web server is accessed by any number of clients
using web browsers 903. To allow users to enter data and send
data to the server, web pages make use of HTML forms 904.
To use the present invention, user interface elements such as
entry fields in these HTML forms are associated with
Questers 905 in the form of browser Plug-Ins or Java Applets.
Through a QuestObjects Controller 906 those Questers allow
the user to access one or more QuestObjects Services hosted
by a QuestObjects Server 902 using the protocol of the
present invention 907. The Server Controller 908 forwards
user actions generated in the Client Questers 905 to their
corresponding Server Questers 909 that thus are always
aware of data selected in the Client. When a Server Quester is
first activated, it checks whether it is being used by a client
system that requires the use of an Application Proxy. If the
answer is yes, then the Quester creates a corresponding
AppHost Synchronizer 911 that contacts the QuestObjects
Adaptor 914 on the host computer 901 using a standardized
protocol 915. The QuestObjects Adaptor then knows which
QuestObjects Server to contact to retrieve QuestObjects data
915 after the user submits form data 912 to the application
host using the existing application protocol 913. Such as
HTTP POST or HTTP GET. The QuestObjects Adaptor then
replaces the appropriate form field data with the strings
selected in the Server Questers 909 before forwarding this
form data, now including data selected using the present
invention, to the web server 917.
Design Implementation
The preceding detailed description illustrates software

objects and methods of a system implementing the present
invention. By providing a simple and standardized interface
between Client components and any number of Content
Engines that accept string-based queries, the present inven
tion gives content publishers, web publishers and software
developers an attractive way to offer unprecedented interac
tive, speedy, up-to-date and controlled access to content with
out the need to write an access mechanism for each content
SOUC.

In addition to acting as a standardized gateway to any
content engine, the present invention can intelligently cache
query results, distribute Services over a network of Servers,
validate user and other client input, authorize user access and
authenticate client Software components as needed. These
and other optional services are provided by the present inven
tion without requiring additional work on the part of software
developers or content publishers. Publishers can also keep
track of usage statistics, on a per-user basis as required allow
ing flexible billing of content access. Content Access Mod
ules allow software developers and vendors of Content
Engines such as database vendors and search engine vendors
to create simplified ways for developers and implementers of
Such content engines to disclose information through the
present invention.
End users of the present invention experience an unprec

edented level of user-friendliness accessing information that
is guaranteed to be up-to-date while being efficiently cached
for speedy access as the number of simultaneous users grows.
The present invention can be implemented on any client

and server system using any combination of operating sys
tems and programming languages that Support asynchronous
network connections and preferably but not necessarily pre
emptive multitasking and multithreading. The interface of the
present invention as it appears to the outside world (i.e. pro
grammers and developers who provide access to end users
and programmers who provide Content Access Modules to
Content Engines used by content publishers) is independent
of both the operating systems and the programming lan

US 8,539,024 B2
31

guages used. Adapters can be built allowing the tiers of the
system to cooperate even if they use a different operating
system or a different programming language. The protocol of
the present invention can be implemented on top of network
ing standards such as TCP/IP. It can also take advantage of
inter-object communication standards such as CORBA and
DCOM. The object model of the present invention can be
mapped to most other programming languages, including
Java, C++, Objective C and Pascal.

Third-party vendors of software development and database
management tools can create components that encapsulate
the present invention so that users of those tools can access its
functionality without any knowledge of the underlying pro
tocols and server-side solutions. For example, a 4GL tool
vendor can add an auto-complete field to the toolbox of the
development environment allowing developers to simply
drop a Questlet into their application. In order to function
correctly, the auto-complete field would only need a reference
to the QuestObjects Server and one or more QuestObjects
Services, but it would not require any additional program
ming.

Examples of Applications in which the invention may be
used include: Access system for database fields (for lookup
and auto-complete services); Enterprise thesauri system;
Enterprise search and retrieval systems: Enterprise reference
works: Enterprise address books; Control systems for send
ing sensor readings to a server that responds with appropriate
instructions or actions to be taken; Client access to dictionary,
thesaurus, encyclopedia and reference works; Access to com
mercial products database; Literary quotes library; Real-time
stock quote provision; Access to real-time news service;
Access to Internet advertisements; Access to complex func
tions (bank check, credit card validation, etc); Access to lan
guage translation engines; Access to classification schemes
(eg. Library of Congress Subject Headings); Access to lookup
lists such as cities or countries in an order form; Personal
address books; and, Personal auto-complete histories.
The foregoing description of preferred embodiments of the

present invention has been provided for the purposes of illus
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Obvi
ously, many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the
scope of the invention be defined by the following claims and
their equivalence.
What is claimed is:
1. A system comprising:
a server system, including one or more computers, which is

configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com
prising a lengthening string of characters, sends query
messages to the server System;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user, and

wherein the server system, while receiving said query mes
Sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input; and

5

10

15

25

30

35

40

45

50

55

60

65

32
wherein, upon receiving a return message of the return

messages from the server system, the client object tests
the usability of the results in the return message by
checking that the return message corresponds to the
latest query, and if usability is established, the client
object displays or returns at least some result data to the
USC.

2. The system of claim 1, wherein, upon testing the usabil
ity of the server system results, at least some result data is
displayed as an auto-completion inside of an input field.

3. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein upon testing the
usability of the server system results, at least Some result data
is displayed in a separate area that is associated with the input
field or that pops up near said input field.

4. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein one or more symbols
displayed inside of the inputfield indicate(s) to the user one or
more of whether or not said system is present, whether the
system is available for use, the current state of the system,
whether a query has been sent to the server system, whether
more results are available, whether a previous result is avail
able, whether a next result is available, or whether the current
result is the only available match.

5. The system of claim 1, wherein the server system sends
return messages to the client object containing results both in
response to the input and associated with a string contained
elsewhere on the same client object to which the input has a
predefined dependency.

6. The system of claim 1, wherein the server system
retrieves the results from one or more of a database, a search
and retrieval system, a thesaurus, a reference work, an address
book, a control system, a dictionary, an encyclopedia, a prod
ucts database, a quotes library, a stock quote system, a news
service, internet advertisements, a catalog, a complex func
tion, a translation engine, a classification scheme, a lookup
list, an auto-complete history, an algorithm, a directory, a
search engine, a database retrieval engine, or a cache.

7. The system of claim 1, wherein the server system caches
query results and Subsequently determines results by looking
up the query in said cache so that it can avoid performing a
query for the same input on a data source or looking up said
query in a second cache.

8. The system of claim 1, wherein the client object trans
mits an associated query message to the server system upon
each detected change to the input.

9. The system of claim 1, wherein the client object accu
mulates input before transmitting an associated query mes
sage to the server system.

10. The system of claim 1, wherein the client object com
bines the input string with additional information, whereby
said additional information includes one or more of an indi
cation of whether or not results should be sorted, whether
results should be in response to both the user input and a
qualifier, how many results should be returned, or which
selection of results should be returned.

11. The system of claim 10, whereby said qualifier identi
fies a user to the server system whereby the server system
returns messages containing results in response to said user.

12. The system of claim 1, wherein the results returned by
the server system include suggestions for the user input; and

wherein these Suggestions change dynamically while the
user is providing input.

13. The system of claim 1, wherein selections of results
returned by the server system are related to the user input
through predefined relationships; and

US 8,539,024 B2
33

wherein an indicator of the corresponding relationship is
displayed or returned alongside each of said result selec
tions.

14. The system of claim 13, wherein said relationships are
organized according to a dictionary or thesaurus system that
includes one or more of broader term relationships, narrower
term relationships, related term relationships, synonym rela
tionships, used-for term relationships, meaning relationships,
or uses relationships.

15. The system of claim 1, wherein results returned by the
server system comprise result sets consisting of Zero or more
string values.

16. The system of claim 1, wherein results returned by the
server system comprise a set of Zero or more results;

wherein each result consists of one or more of a string, key,
fetch time, expiration time, metadata, logical link to
other data sources, or a Uniform Resource Identifier.

17. The system of claim 1, wherein the client object deter
mines the usability of each server system response by com
paring an original input to a then-current input; and

wherein the client object deems the results usable if they
match.

18. The system of claim 1, wherein the query message sent
to the server system includes a request identification that is
included by the server system in the corresponding server
response message.

19. The system of claim 18, wherein the usability of a
server system response is determined by the client object by
matching the request identification received in the server
response message against a request identification on the cli
ent.

20. The system of claim 1, wherein the client object caches
results received from the server system and reuses said
cached results when Previously Presented queries match que
ries contained in the cache or if cached query results can be
filtered to match the Previously Presented queries, instead of
sending messages representing those Previously Presented
queries to the server system.

21. The system of claim 1, wherein one or more filters are
used to validate or transform the input string using a type,
pattern, or minimum length; and

wherein no query is performed if the input string is found
not to conform to or does not transform using said type,
pattern, or minimum length.

22. The system of claim 1, wherein the server system is
capable of returning results from multiple data sources;

wherein the client object selects which of the available data
Sources at the server system is to be queried; and

wherein the system selects one or more data sources based
on a name associated with each data source, on types of
queries accepted by each data source, or on String types
that can be returned by each data source.

23. The system of claim 1, wherein the input on the client
object represents speech and is generated by a sound conver
Sion engine.

24. The system of claim 1, wherein return messages
include Suggestions and related data relevant to the Sugges
tions, and wherein the related data is displayed in a user
selectable manner; wherein a selection of the related data
displayed to the user causes additional data to be obtained
from the server system and be displayed.

25. The system of claim 1, wherein the client object is run
by a web browser.

26. The system of claim 1, wherein the client object is run
on a mobile device.

10

15

25

30

35

40

45

50

55

60

65

34
27. The system of claim 1, wherein the client object tests

the usability of the results in the return message by matching
an ID for the user query.

28. The system of claim 27, wherein the client object tests
the usability of the results in the return message by matching
an ID included in one of the query messages sent to the server
system and returned as part of the return message.

29. The system of claim 1 wherein the client object uses a
pre-defined query and automatically transmits a correspond
ing message to the server as the client object is first run, and
wherein user input is not required before server responses are
sent to the client object.

30. The system of claim 1, wherein the server system
automatically sends messages containing Previously Pre
sented results to the client object as updated data in response
to a previous query becomes available.

31. The system of claim 1, wherein the client object auto
matically repeats a query to retrieve updated information
from the server system.

32. A system including at least one computer comprising:
a server system using a communication protocol that

enables asynchronous communication between the
server system and a client object; and

wherein the client object that, while a user is providing
input comprising a lengthening string of characters,
sends query messages to the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user, and

wherein the server system, while receiving said query mes
Sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input

wherein upon receiving corresponding return messages
from the server system, the client object tests the usabil
ity of each return message by checking that the return
message corresponds to the latest query, and if usability
is established, provides feedback to the user based on the
contents of the return message.

33. The system of claim 32, wherein the client object is run
using a web browser.

34. The system of claim 32, wherein the client object is run
on a mobile device.

35. A system comprising:
a client object adapted to receive input comprising a

lengthening string of characters from a user, the client object asynchronously sending multiple query messages
corresponding to multiple versions of said input to a
server system while a user modifies the input, compris
ing a lengthening string of characters, the client object
receiving return messages with results in response to the
multiple versions of the input;
whereby the query messages represent the lengthening

string as additional characters are being input by the
user; and

wherein the server system, while receiving said query
messages, uses the input to query data available to the
server system and send return messages to the client
object containing results in response to the input

wherein upon receiving one of the return messages from
the server system, the client object checks the usabil
ity of the results of the one of the return messages
using a more recent version of the input to determine
whether to display at least some of the results of the
one of the return messages to the user.

US 8,539,024 B2
35

36. A system comprising:
a server system, including one or more computers, which is

configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

wherein the client object, while a software process is pro
Viding input comprising a lengthening string of charac
ters, sends query messages representing said input, to
the server system;

whereby the query messages represent the lengthening
String as additional characters are being input by the
software process;

wherein the server system, while receiving said query mes
Sages, uses the input to query data available to the server
object and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the return
messages from the server system, the client object tests
the usability of the results in the return message by
comparing the return message to the then-current input
or matching it with a request identification maintained
on the client object, and if usability is established, the
results are returned to the software process.

5

10

15

36
37. A system comprising:
a server system, including one or more computers, which is

configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com
prising a lengthening string of characters, sends query
messages representing said input to the server system;

whereby the query messages represent the lengthening
String as additional characters are being input by the
user;

wherein the server system, while receiving said query mes
Sages, uses the input to query data available to the server
System and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the return
messages from the server object, the client object tests
the usability of the results in the return message by
matching an ID associated with the input sent to the
server system with an ID maintained in the client object,
and if usability is established, the client object displays
or returns at least some of the result data to the user.

ck ck ck ck ck

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,539,024 B2 Page 1 of 1
APPLICATIONNO. : 13/366905
DATED : September 17, 2013
INVENTOR(S) : Smit et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 33, line 34, Claim 20, delete “Previously Presented and insert --new-.

Column 33, line 36, Claim 20, delete “Previously Presented and insert --new-.

Column 33, line 37, Claim 20, delete “Previously Presented and insert --new-.

Column 34, line 14, Claim 30, delete “Previously Presented and insert --new-.

Signed and Sealed this
Eighth Day of April, 2014

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

